二項(xiàng)式(e3+
3
3e
x)
3
展開(kāi)式的第三項(xiàng)系數(shù)為a,則
a
1
1
x
dx=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:根據(jù)二項(xiàng)式(e3+
3
3e
x)
3
展開(kāi)式中的第三項(xiàng)系數(shù)為a,求出a,然后求解定積分.
解答: 解:二項(xiàng)式(e3+
3
3e
x)3
展開(kāi)式的第三項(xiàng)系數(shù)為a,
∴a=C32(
3
3e
)2
e2=e,
a
1
1
x
dx=
e
1
1
x
dx=
lnx|
e
1
=1
故答案為:1
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),定積分的運(yùn)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={a,b,c},B={0,1}.試問(wèn):從A到B的映射共有幾個(gè)?并將它們分別表示出來(lái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若數(shù)列{an+1-αan}是公比為β的等比數(shù)列,證明:數(shù)列{an+1-βan}是公比為α的等比數(shù)列;(a2-αa1≠0,a2-βa1≠0,αβ≠0)
(2)若an+1-4an=3n,a1=1
①求an
②證明:
1
a1
+
1
a2
+…+
1
an 
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三角形中,∠A=60°,a=
3
,則三角形的面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x-1
x(x+1)
的極大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足:a1=1,an+1=
an
an+2
(n∈N*),若bn=1+
1
an
,則log2b2013的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知以下四個(gè)命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個(gè)實(shí)根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2};
x-1
x-2
≤0是(x-1)(x-2)≤0的充要條件;
③若m>2,則x2-2x+m>0的解集是實(shí)數(shù)集R;
④若函數(shù)y=x2-ax+b在[2,+∞)上是增函數(shù),則a≤4.
其中為真命題的是
 
.(填上你認(rèn)為正確的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題:“?x∈[1,2],x2+2x+a2+4a≥0”為真命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|
1
x
>2},B={y|y=x2-x-2},則A∩B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案