【題目】已知函數(shù)

)求的值.

)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間.

【答案】1;, ,

【解析】試題分析:(1)根據(jù)函數(shù)的解析式,計(jì)算的值即可;
(2)化函數(shù)為正弦型函數(shù),即可求出它的最小正周期與單調(diào)遞增區(qū)間.

試題解析:函數(shù),

)由()知

函數(shù)的最小正周期,

,

,

函數(shù)的單調(diào)遞增區(qū)間是,

點(diǎn)睛:三角函數(shù)式的化簡(jiǎn)要遵循“三看”原則:(1)一看“角”,這是最重要的一環(huán),通過(guò)看角之間的區(qū)別和聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式;(2)而看“函數(shù)名稱(chēng)”看函數(shù)名稱(chēng)之間的差異,從而確定使用公式,常見(jiàn)的有“切化弦”;(3)三看“結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如“遇到分式通分”等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,定義在[-1,+∞)上的函數(shù)的圖象由一條線段及拋物線的一部分組成.

(1)的值及的解析式;

(2)f(x)=,求實(shí)數(shù)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形.

)求橢圓的方程.

)過(guò)定點(diǎn)的動(dòng)直線,交橢圓兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=的定義域?yàn)?/span>M.

(1)求M;

(2)當(dāng)xM時(shí),求g(x)=4x﹣2x+1+1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐的四個(gè)側(cè)面的面積中最大的是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若f(x)是定義在(﹣∞,+∞)上的偶函數(shù),x1 , x2∈[0,+∞)(x1≠x2),有 ,則(
A.f(3)<f(1)<f(﹣2)
B.f(1)<f(﹣1)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(﹣2)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c.已知a+c=3 ,b=3.
(1)求cosB的最小值;
(2)若 =3,求A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面分別為的中點(diǎn),且.

(1)求證:平面平面

(2)求證:平面平面;

(3)求三棱錐與四棱錐的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角梯形,如圖(1)所示, , ,連接,將沿折起,使得平面平面,得到幾何體,如圖(2)所示.

(1)求證: 平面

(2)若,求二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案