已知等差數(shù)列{an}滿(mǎn)足a3=8,a6=17.
(1)求{an}的通項(xiàng)公式;
(2)各項(xiàng)均為正數(shù)的等比數(shù)列{bn}滿(mǎn)足b1=a1,b3=a3,求數(shù)列{bn}的通項(xiàng)公式.
考點(diǎn):等比數(shù)列的通項(xiàng)公式,等差數(shù)列的通項(xiàng)公式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等差數(shù)列通項(xiàng)公式,列出方程組,求出首項(xiàng)和公差,由此能求出{an}的通項(xiàng)公式.
(2)由已知條件利用等比數(shù)列通項(xiàng)公式,列出方程組,求出首項(xiàng)和公比,由此能求出數(shù)列{bn}的通項(xiàng)公式.
解答: (本題滿(mǎn)分(13分),第(1)問(wèn)(6分),第(2)問(wèn)7分)
解:(1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
依題意有:
a3=a1+2d=8
a6=a1+5d=17
,
解得:
a1=2
d=3

∴an=3n-1.(6分)
(2)依題意設(shè)bn=b1qn-1,
∵等比數(shù)列{bn}滿(mǎn)足b1=a1,b3=a3
b1=2
b3=b1q2=8
,
∵{bn}為正項(xiàng)等比數(shù)列,∴q>0,
解得
b1=2
q=2
,∴bn=2n.…(13分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,解題時(shí)要認(rèn)真審題,注意等差數(shù)列和等比數(shù)列的性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求使
3+2x+x2
有意義的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(m-3)ex,g(x)=2ax+1+blnx,其中m,a,b∈R,x>0.曲線(xiàn)g(x)在x=1處的切線(xiàn)方程為y=3x
(1)求函數(shù)g(x)的解析式;
(2)當(dāng)k≤0時(shí),求h(x)=
1
2
kx2+g(x)的單調(diào)區(qū)間;
(3)若f(x)的圖象恒在g(x)圖象的上方,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等腰Rt△ABC,BC⊥AC,將△ABC繞著邊AB旋轉(zhuǎn)θ角到△ABC′,連接CC′,D為線(xiàn)段CC′的中點(diǎn),P是線(xiàn)段AB上任一點(diǎn).
(1)求證:CC′⊥DP;
(2)當(dāng)三棱錐B-ACC′的體積達(dá)到最大時(shí),點(diǎn)P在線(xiàn)段AB的什么位置時(shí),直線(xiàn)AC與平面CDP所成的角最大?為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)六名同學(xué)做一個(gè)游戲,買(mǎi)了六張卡片,各自在其中一張上寫(xiě)祝福,然后放在一起,每人隨機(jī)拿一張,恰有兩人拿回自己寫(xiě)祝福的那張卡片,則不同的拿法有多少種?
(2)3位男生和3位女生共6位同學(xué)站成一排,若男生甲不站兩端,3位女生中有且只有兩位女生相鄰,則不同的排法總數(shù)為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某醫(yī)院有內(nèi)科醫(yī)生5名,外科醫(yī)生4名,現(xiàn)要派4名醫(yī)生參加賑災(zāi)醫(yī)療隊(duì),
(1)一共有多少種選法?
(2)其中某內(nèi)科醫(yī)生必須參加,某外科醫(yī)生因故不能參加,有幾種選法?
(3)內(nèi)科醫(yī)生和外科醫(yī)生都要有人參加,有幾種選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面ABC⊥平面DBC,已知AB=AC,BC=6,∠BAC=∠DBC=90°,∠BDC=60° 
(1)求證:平面ABD⊥平面ACD;
(2)求二面角A-CD-B的平面角的余弦值;
(3)記經(jīng)過(guò)直線(xiàn)AD且與BC平行的平面為α,求點(diǎn)B到平面α的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)袋子中有3個(gè)紅球和2個(gè)黃球,5個(gè)球除顏色外完全相同,甲、乙兩人先后不放回地從中各取1個(gè)球.規(guī)定:若兩人取得的球的顏色相同則甲獲勝,否則乙獲勝.
(1)求兩個(gè)人都取到黃球的概率;
(2)計(jì)算甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F為拋物線(xiàn)E:y2=2px(P>0)的焦點(diǎn),拋物線(xiàn)上點(diǎn)G的橫坐標(biāo)為2,且滿(mǎn)足|GF|=3.
(Ⅰ)求拋物線(xiàn)E的方程;
(Ⅱ)M點(diǎn)的坐標(biāo)為(2,0),過(guò)點(diǎn)F作斜率為1K的直線(xiàn)與拋物線(xiàn)交于A(yíng)、B兩點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)均不為2,連結(jié)AM、BM并延長(zhǎng)交拋物線(xiàn)于C、D兩點(diǎn),設(shè)直線(xiàn)CD的斜率為k2,判斷
k1
k2
是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案