3.在三棱柱ABC-A1B1C1中,底面ABC為正三角形,A1在底面ABC上的射影是棱BC的中點(diǎn)O,OE⊥AA1于E點(diǎn).
(Ⅰ)證明OE⊥平面BB1C1C;
(Ⅱ)若AA1=2AB=2,求四棱錐A1-BB1C1C的體積.

分析 (Ⅰ)連結(jié)OA,由正三角形的性質(zhì)得OA⊥BC,由射影性質(zhì)得A1O⊥底面ABC,從而BC⊥平面AOA1,進(jìn)而BC⊥EO,由OE⊥AA1于E點(diǎn),是OE⊥BB1,由此能證明OE⊥平面BB1C1C.
(Ⅱ)由(Ⅰ)知,BC⊥AA1,BC⊥BB1,可得S□BB1C1C=BC×BB1=2,利用等面積可得OE,根據(jù)體積公式,可得四棱錐A1-BB1C1C的體積.

解答 (Ⅰ)證明:連結(jié)OA,∵底面ABC為正三角形,∴OA⊥BC,
∵A1在底面ABC上的射影是棱BC的中點(diǎn)O,
∴A1O⊥底面ABC,又BC?面ABC,
∴A1O⊥BC,∴BC⊥平面AOA1
∵OE?平面AOA1,∴BC⊥EO,
∵OE⊥AA1于E點(diǎn),∴OE⊥BB1,
又BC∩BB1=B,∴OE⊥平面BB1C1C.
(2Ⅱ)解:由(Ⅰ)知,BC⊥AA1,∴BC⊥BB1,
∵AA1=2AB=2,
∴S□BB1C1C=BC×BB1=2,
Rt△AA1O中,AA1=2,AO=$\frac{\sqrt{3}}{2}$,A1O=$\frac{\sqrt{7}}{2}$,利用等面積可得OE=$\frac{\frac{\sqrt{3}}{2}×\frac{\sqrt{7}}{2}}{2}$=$\frac{\sqrt{21}}{8}$
故VA-BB1C1C=$\frac{1}{3}$S□BB1C1C×OE=$\frac{1}{3}×2×\frac{\sqrt{21}}{8}$=$\frac{\sqrt{21}}{12}$.

點(diǎn)評(píng) 本題考查直線與平面垂直的判定定理、四棱錐A1-BB1C1C的體積等基礎(chǔ)知識(shí),考查學(xué)生空間想象能力、邏輯推理能力和運(yùn)算求解能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.若函數(shù)f(x)的圖象從左到右先增后減,則稱函數(shù)f(x)為“∩型”函數(shù),圖象的最高點(diǎn)的橫坐標(biāo)稱為“∩點(diǎn)”.
(1)若函數(shù)f(x)=lnx-$\frac{1}{2m}$(x2-1)為“∩型”函數(shù),試求實(shí)數(shù)m的取值范圍,并求出此時(shí)的“∩點(diǎn)”.
(2)若g(x)=x-lnx,試證明:$\sum_{k=2}^{n}$$\frac{1}{k-g(k)}$>$\frac{3{n}^{2}-n-2}{n(n+1)}$(n∈N,n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-a|-$\frac{9}{x}$+a,x∈[1,6],a∈R.,當(dāng)a∈(1,6)時(shí),求函數(shù)f(x)的最大值的表達(dá)式M(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2
(1)求函數(shù)的最小正周期;
(2)計(jì)算f(0)+f(1)+f(2)+…+f(2015).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.有A、B、C型高級(jí)電腦各一臺(tái),甲、乙、丙、丁四個(gè)操作人員的技術(shù)等次不同,甲、乙會(huì)操作3種型號(hào)的電腦,丙不能操作C型電腦,而丁只會(huì)操作A型電腦,今從這4個(gè)操作人員中選3人分別去操作以上電腦,則不同的選派方法有8種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.把公差為2的等差數(shù)列{an}的各項(xiàng)依次插入等比數(shù)列{bn}的第1項(xiàng)、第2項(xiàng)、…、第n項(xiàng)后,得到數(shù)列{cn}:b1,a1,b2,a2,b3,a3,b4,a4,…,記數(shù)列{cn}的前n項(xiàng)和為Sn,已知c1=1,c2=3,S3=$\frac{17}{4}$.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)Tn=2012•bn+an,閱讀程序框圖寫出輸出項(xiàng),并指出此時(shí)輸出項(xiàng)在{Tn}中的一種含義.
(3)若第(2)題中判斷框Ti<15改為Ti<50,閱讀程序框圖寫出所有輸出項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=xlnx,若x>1,試判斷方程f(x)=(x-1)(ax-a-1)的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ln(x+1),g(x)=$\frac{ax}{x+1}$.
(1)若a=e,求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若f(x)≥g(x)恒成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知a>0,b>1且2a+b=4,則$\frac{1}{a}$+$\frac{2}{b-1}$的最小值為( 。
A.8B.4C.2$\sqrt{2}$D.$\frac{8}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案