2.下列程序運(yùn)行的結(jié)果是5050.

分析 根據(jù)程序語(yǔ)言的運(yùn)行過(guò)程,得出程序運(yùn)行后輸出S=1+2+3+…+100,求出S的值即可.

解答 解:根據(jù)程序語(yǔ)言的運(yùn)行過(guò)程,得;
該程序運(yùn)行后輸出的是S=1+2+3+…+100的值,
所以S=$\frac{(1+100)×100}{2}$=5050.
故答案為:5050.

點(diǎn)評(píng) 本題考查了程序語(yǔ)言的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序的運(yùn)行過(guò)程,以便得出正確的結(jié)論,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知單調(diào)遞增的等比數(shù)列{an}滿足a1+a2+a3=7,且a3是a1,a2+5的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an+1,cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,記數(shù)列{cn}的前n項(xiàng)和為Tn.若對(duì)任意的n∈N*,不等式Tn≤k(n+4)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,則目標(biāo)函數(shù)z=x+y的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在2與16之間插入a和b兩個(gè)數(shù),使得2,a,b,16四個(gè)數(shù)成等比數(shù)列,求a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.課外興趣小組共有15人,其中9名男生,6名女生,其中1名為組長(zhǎng),現(xiàn)要選3人參加數(shù)學(xué)競(jìng)賽,分別求出滿足下列各條件的不同選法數(shù).
(1)要求組長(zhǎng)必須參加;
(2)要求選出的3人中至少有1名女生;
(3)要求選出的3人中至少有1名女生和1名男生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),且當(dāng)x0≥1,f(x0)≥1時(shí),有f(f(x0))=x0.求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知(x+2)5=a0+a1(x+4)+a2(x+4)2+a3(x+4)3+a4(x+4)4+a5(x+4)5,則a3=40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知定義在D=($\frac{-1-\sqrt{5}}{2}$,$\frac{-1+\sqrt{5}}{2}$)上的函數(shù)f(x)=$\frac{1}{1-x-{x}^{2}}$,存在無(wú)窮數(shù)列{an},滿足f(x)=a0+a1x+a2x2+…+anxn+…
(1)試求數(shù)列{an}的前三項(xiàng)a0、a1、a2的值,并證明:對(duì)任意的n∈N*都有an≥n;
(2)數(shù)列{an}滿足bn=$\frac{{a}_{n}}{{a}_{n-1}{a}_{n+1}}$,n∈N*,是否存在正常數(shù)r,使{bn}的前n項(xiàng)和Sn≤rf(x)對(duì)任意的x∈D恒成立?若存在,試求出常數(shù)r的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若函數(shù)y=cos2ωx(ω>0)的最小正周期是π,則ω=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案