A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
分析 原式變形后,利用多項式乘以多項式法則計算,利用基本不等式求出取得最小值時sinθ的值即可.
解答 解:$\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$=($\frac{1}{si{n}^{2}θ}$+$\frac{4}{co{s}^{2}θ}$)(sin2θ+cos2θ)=5+$\frac{co{s}^{2}θ}{si{n}^{2}θ}$+$\frac{4si{n}^{2}θ}{co{s}^{2}θ}$≥5+2$\sqrt{4}$=9,
當且僅當$\frac{co{s}^{2}θ}{si{n}^{2}θ}$=4×$\frac{si{n}^{2}θ}{co{s}^{2}θ}$,即cos4θ=4sin4θ時,取等號,
∵θ為銳角,∴sinθ>0,cosθ>0,
此時sin2θ=$\frac{1}{3}$,即sinθ=$\frac{\sqrt{3}}{3}$.
故選:A.
點評 此題考查了同角三角函數(shù)基本關(guān)系的運用,以及基本不等式的應(yīng)用,熟練掌握基本不等式是解本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{21}}{3}$ | B. | $\sqrt{13}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com