分析 (Ⅰ)求出函數(shù)的導數(shù),得到斜率k=ae=2e,求出a的值即可;
(Ⅱ)等價于證明2xlnx+$\frac{5}{e}$>$\frac{1}{{e}^{x}}$,令g(x)=2xlnx+$\frac{5}{e}$,根據(jù)函數(shù)的單調(diào)性求出g(x)的最小值,再求出y=$\frac{1}{{e}^{x}}$在(0,+∞)的最小值,從而證出結(jié)論.
解答 解:(Ⅰ)函數(shù)f(x)的定義域是(0,+∞),
f′(x)=a(exlnx+$\frac{{e}^{x}}{x}$),
由已知y=f(x)在x=1處的切線的斜率k=ae,
∴f′(1)=ae=2e,解得:a=2;
(Ⅱ)要證明xf(x)>1-5ex-1,
即證明2xexlnx>1-5ex-1,x>0,
等價于證明2xlnx+$\frac{5}{e}$>$\frac{1}{{e}^{x}}$,
令g(x)=2xlnx+$\frac{5}{e}$,∴g′(x)=2(lnx+1),
0<x<$\frac{1}{e}$時,g′(x)<0,x>$\frac{1}{e}$時,g′(x)>0,
∴g(x)=2xlnx在(0,$\frac{1}{e}$)遞減,在($\frac{1}{e}$,+∞)遞增,
∴g(x)min=g($\frac{1}{e}$)=$\frac{3}{e}$,
∵y=${(\frac{1}{e})}^{x}$在(0,+∞)遞減,
∴${(\frac{1}{e})}^{x}$<${(\frac{1}{e})}^{0}$=1,
∴g(x)≥$\frac{3}{e}$>1>$\frac{1}{{e}^{x}}$,
∴xf(x)>1-5ex-1.
點評 本題考查了切線斜率問題,考查函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及不等式的證明,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
年齡不低于45歲的人 | 年齡低于45歲的人 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
學號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
數(shù)學成績 | 114 | 106 | 115 | 77 | 86 | 90 | 95 | 86 | 97 | 79 | 100 | 78 | 77 | 113 | 60 |
物理成績 | 72 | 49 | 51 | 29 | 57 | 49 | 62 | 22 | 63 | 29 | 42 | 21 | 37 | 46 | 21 |
學號 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
數(shù)學成績 | 89 | 74 | 82 | 95 | 64 | 87 | 56 | 65 | 43 | 64 | 64 | 85 | 66 | 56 | 51 |
物理成績 | 65 | 45 | 33 | 28 | 29 | 28 | 39 | 34 | 45 | 35 | 35 | 34 | 20 | 29 | 39 |
物理Ⅰ | 物理Ⅱ | 合計 | |
數(shù)學Ⅰ | 4 | ||
數(shù)學Ⅱ | 15 | ||
合計 | 30 |
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com