分析 (1)利用二倍角公式對函數(shù)解析式化簡,利用三角函數(shù)圖象與性質(zhì)求得函數(shù)的單調(diào)區(qū)間.
(2)利用函數(shù)圖象平移法則求得答案.,
(3)先求得sin(α+$\frac{π}{3}$)的值,進(jìn)而利用正弦的兩角和公式求得答案.
解答 解:(1)f(x)=sinx-$\sqrt{3}$+$\sqrt{3}$cosx+$\sqrt{3}$=2sin(x+$\frac{π}{3}$),
令2kπ-$\frac{π}{2}$≤x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,即2kπ-$\frac{5π}{6}$≤x≤2kπ+$\frac{π}{6}$,k∈Z,函數(shù)單調(diào)增,
令2kπ+$\frac{π}{2}$≤x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,即2kπ+$\frac{π}{6}$≤x≤2kπ+$\frac{4π}{3}$,k∈Z,函數(shù)單調(diào)減,
故函數(shù)的單調(diào)增區(qū)間為[2kπ-$\frac{5π}{6}$,2kπ+$\frac{π}{6}$],單調(diào)減區(qū)間為[2kπ+$\frac{π}{6}$,2kπ+$\frac{4π}{3}$],k∈Z.
(2)函數(shù)f(x)的圖象,由y=sinx的圖象向左平移$\frac{π}{3}$個單位,然后橫坐標(biāo)不變,縱坐標(biāo)擴(kuò)大為原來的2倍,得到.
(3)f(α)=2sin(α+$\frac{π}{3}$)=$\frac{6}{5}$,
∴sin(α+$\frac{π}{3}$)=$\frac{3}{5}$,
∵α∈($\frac{π}{6},\frac{2π}{3}$),
∴$\frac{π}{2}$<α+$\frac{π}{3}$<π,
∴cos($α+\frac{π}{3}$)=-$\sqrt{1-\frac{9}{25}}$=-$\frac{4}{5}$,
sin(α+$\frac{π}{3}$-$\frac{π}{6}$)=sin($α+\frac{π}{3}$)cos$\frac{π}{6}$-cos($α+\frac{π}{3}$)sin$\frac{π}{6}$=$\frac{3}{5}$×$\frac{\sqrt{3}}{2}$+$\frac{4}{5}$×$\frac{1}{2}$=$\frac{3\sqrt{3}+4}{10}$,
∴f($α-\frac{π}{6}$)=2sin(α+$\frac{π}{3}$-$\frac{π}{6}$)=$\frac{3\sqrt{3}+4}{5}$.
點(diǎn)評 本題主要考查了三角函數(shù)圖象與性質(zhì),三角函數(shù)恒等變換的應(yīng)用.考查了學(xué)生綜合素質(zhì)的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<-$\frac{1}{e}$ | B. | a>-$\frac{1}{e}$ | C. | a<-$\frac{1}{2}$ | D. | a>-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com