【題目】已知常數(shù),向量,,經(jīng)過定點且以為方向向量的直線與經(jīng)過定點且以為方向向量的直線交于點,其中.
(1)求點的軌跡的方程;
(2)若,過的直線交曲線于,兩點,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩袋裝有大小相同的紅球和白球,甲袋裝有2個紅球和2個白球,乙袋裝有2個紅球和n個白球.現(xiàn)從甲、乙兩袋中各任取2個球.
(1)若,求取到的4個球全是紅球的概率;
(2)若取到的4個球中至少有2個紅球的概率為,求n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年4月8日零時正式解除離漢通道管控,這標志著封城76天的武漢打開城門了.在疫情防控常態(tài)下,武漢市有序復工復產(chǎn)復市,但是仍然不能麻痹大意仍然要保持警惕,嚴密防范、慎終如始.為科學合理地做好小區(qū)管理工作,結合復工復產(chǎn)復市的實際需要,某小區(qū)物業(yè)提供了A,B兩種小區(qū)管理方案,為了決定選取哪種方案為小區(qū)的最終管理方案,隨機選取了4名物業(yè)人員進行投票,物業(yè)人員投票的規(guī)則如下:①單獨投給A方案,則A方案得1分,B方案得﹣1分;②單獨投給B方案,則B方案得1分,A方案得﹣1分;③棄權或同時投票給A,B方案,則兩種方案均得0分.前1名物業(yè)人員的投票結束,再安排下1名物業(yè)人員投票,當其中一種方案比另一種方案多4分或4名物業(yè)人員均已投票時,就停止投票,最后選取得分多的方案為小區(qū)的最終管理方案.假設A,B兩種方案獲得每1名物業(yè)人員投票的概率分別為和.
(1)在第1名物業(yè)人員投票結束后,A方案的得分記為ξ,求ξ的分布列;
(2)求最終選取A方案為小區(qū)管理方案的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由0,1,2,3,4,5這六個數(shù)字可以組成多少個沒有重復數(shù)字,且偶數(shù)數(shù)字與奇數(shù)數(shù)字相間隔的四位數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個透明密閉的立方體容器,恰好盛有該容器一半容積的水任意轉(zhuǎn)動這一立方體,則水面在容器中的形狀可能是________.(從正方形,三角形,菱形,矩形,等腰梯形,正六邊形,正五邊形中選取正確的都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某課程考核分理論與實驗兩部分進行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實驗考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.
(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(2)求這三個人該課程考核都合格的概率(結果保留三位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在1與2之間插入個正數(shù),使這個數(shù)成等比數(shù)列;又在1與2之間插入個正數(shù),使這個數(shù)成等差數(shù)列.記.
(1)求數(shù)列和的通項;
(2)當時,比較與大小并證明結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知次多項式.如果在一種算法中,計算的值共需要次乘法,計算的值共需要9次運算(6次乘法,3次加法),那么計算的值共需要______次運算.下面給出一種減少運算次數(shù)的算法:.利用該算法,計算的值共需要6次運算,計算的值共需要______次運算;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為F,過點F,斜率為1的直線與拋物線C交于點A,B,且.
(1)求拋物線C的方程;
(2)過點Q(1,1)作直線交拋物線C于不同于R(1,2)的兩點D、E,若直線DR,ER分別交直線于M,N兩點,求|MN|取最小值時直線DE的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com