15.已知整數(shù)n≥4,集合M={1,2,3,…,n}的所有含有4個(gè)元素的子集記為A1,A2,A3,…,${A_{C_n^4}}$.
設(shè)A1,A2,A3,…,${A_{C_n^4}}$中所有元素之和為Sn
(1)求S4,S5,S6并求出Sn;
(2)證明:S4+S5+…+Sn=10Cn+26

分析 (1)根據(jù)新定義,直接計(jì)算n=4,5,6集合M的子集.歸納法得出Sn
(2)利用組合的公式展開(kāi)各項(xiàng)計(jì)算即可得證.

解答 解:(1)由題意:整數(shù)n≥4,集合M={1,2,3,…,n}的所有含有4個(gè)元素的子集記為A1,A2,A3,…,${A_{C_n^4}}$.
當(dāng)n=4時(shí),集合M只有1個(gè)符合條件的子集,S4=1+2+3+4=10,
當(dāng)n=5時(shí),集合M每個(gè)元素出現(xiàn)了$C_4^3$次,S5=$C_4^3({1+2+3+4+5})$=60,
當(dāng)n=6時(shí),集合M每個(gè)元素出現(xiàn)了$C_5^3$次,S6=$C_5^3({1+2+3+4+5+6})$=210,
所以,當(dāng)集合M有n個(gè)元素時(shí),每個(gè)元素出現(xiàn)了$C_{n-1}^3$,故Sn=$C_{n-1}^3$•$\frac{n(n+1)}{2}$.
(2)證明:由(1)可得Sn=$C_{n-1}^3$•$\frac{n(n+1)}{2}$.
∵Sn=$C_{n-1}^3$•$\frac{n(n+1)}{2}$=$\frac{1}{12}({n+1})n({n-1})({n-2})({n-3})=10C_{n+1}^5$,
則S4+S5+…+Sn=10(${C}_{5}^{5}{+C}_{6}^{5}{+C}_{7}^{5}{+…+C}_{n+1}^{5}$)=$10C_{n+2}^6$.
得證.

點(diǎn)評(píng) 本題考查了新定義的理解和運(yùn)用能力,還考查了組合的公式的計(jì)算化簡(jiǎn)能力.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,b=$\sqrt{3}$,c=3,B=30°,則a=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{3}$或2$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.?dāng)?shù)列{an}滿足a1=4,Sn+Sn+1=$\frac{5}{3}$an+1,則an=$\left\{\begin{array}{l}{4,n=1}\\{-3×{4}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x+$\frac{a}{x}$+b,其中a,b是常數(shù)且a>0.
(1)用函數(shù)單調(diào)性的定義證明f(x)在區(qū)間(0,$\sqrt{a}$]上是單調(diào)遞減函數(shù);
(2)已知函數(shù)f(x)在區(qū)間[$\sqrt{a}$,+∞)上是單調(diào)遞增函數(shù),且在區(qū)間[1,2]上f(x)的最大值為5,最小值為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若f(x)=x-1-alnx,g(x)=$\frac{ex}{e^x}$,a<0,且對(duì)任意x1,x2∈[3,4](x1≠x2),|f(x1)-f(x2)|<|$\frac{1}{{g({x_1})}}$-$\frac{1}{{g({x_2})}}$|的恒成立,則實(shí)數(shù)a的取值范圍為[3-$\frac{2}{3}{e}^{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長(zhǎng)為2的兩個(gè)全等的等腰直角三角形,則該幾何體的外接球的表面積是( 。
A.$\frac{8}{3}$B.4$\sqrt{3}$πC.12πD.$\frac{8\sqrt{3}}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.根據(jù)下列條件,求直線的一般方程:
(1)過(guò)點(diǎn)(2,1)且與直線2x+3y=0平行;
(2)與直線y=x垂直,且在兩坐標(biāo)軸上的截距之和為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=-x2+2x-3.
當(dāng)x∈[2,4]時(shí),求f(x)的值域;
當(dāng)f(m)=6時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.某工廠生產(chǎn)甲、乙、丙3類產(chǎn)品共600件.已知甲、乙、丙3類產(chǎn)品數(shù)量之比為1:2:3.現(xiàn)要用分層抽樣的方法從中抽取120件進(jìn)行質(zhì)量檢測(cè),則甲類產(chǎn)品抽取的件數(shù)為20.

查看答案和解析>>

同步練習(xí)冊(cè)答案