已知圓的方程為,點(diǎn)是坐標(biāo)原點(diǎn).直線(xiàn)與圓交于兩點(diǎn).
(1)求的取值范圍;
(2)過(guò)作圓的弦,求最小弦長(zhǎng)?
(1)或;(2).
解析試題分析:(1)根據(jù)直線(xiàn)與圓相交,得到圓心到直線(xiàn)的距離小于半徑,即可求出的取值范圍;(2)當(dāng)圓心與連線(xiàn)為弦心距時(shí),弦長(zhǎng)最小,利用兩點(diǎn)間的距離公式求出弦心距,由垂徑定理及勾股定理求出最小弦長(zhǎng)即可.
試題解析:(1)圓心到直線(xiàn)的距離,解得或.
(2)當(dāng)圓心與連線(xiàn)為弦心距時(shí),弦長(zhǎng)最小,
∵圓心到的距離為,半徑,
根據(jù)題意得:最小弦長(zhǎng)為.
考點(diǎn):直線(xiàn)與圓的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,直線(xiàn)(為參數(shù))與圓(為參數(shù))相切,切點(diǎn)在第一象限,則實(shí)數(shù)的值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓的方程為:,直線(xiàn)的方程為,點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)作圓的切線(xiàn),切點(diǎn)為.
(1)若,求點(diǎn)的坐標(biāo);
(2)若點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)的直線(xiàn)與圓交于兩點(diǎn),當(dāng)時(shí),求直線(xiàn)的方程;
(3)求證:經(jīng)過(guò)(其中點(diǎn)為圓的圓心)三點(diǎn)的圓必經(jīng)過(guò)定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線(xiàn)l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線(xiàn)y=x-1上,過(guò)點(diǎn)A作圓C的切線(xiàn),求切線(xiàn)的方程;
(2)若圓C上存在點(diǎn)M,使|MA|=2|MO|,求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線(xiàn)l:y=x+m,m∈R.
(1)若以點(diǎn)M(2,0)為圓心的圓與直線(xiàn)l相切于點(diǎn)P,且點(diǎn)P在y軸上,求該圓的方程;
(2)若直線(xiàn)l關(guān)于x軸對(duì)稱(chēng)的直線(xiàn)為l′,問(wèn)直線(xiàn)l′與拋物線(xiàn)C:x2=4y是否相切?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓的方程為,直線(xiàn)的方程為,點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)作圓的切線(xiàn),切點(diǎn)為.
(1)若,試求點(diǎn)的坐標(biāo);
(2)若點(diǎn)的坐標(biāo)為,過(guò)作直線(xiàn)與圓交于兩點(diǎn),當(dāng)時(shí),求直線(xiàn)的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓,
(Ⅰ)若過(guò)定點(diǎn)()的直線(xiàn)與圓相切,求直線(xiàn)的方程;
(Ⅱ)若過(guò)定點(diǎn)()且傾斜角為的直線(xiàn)與圓相交于兩點(diǎn),求線(xiàn)段的中點(diǎn)的坐標(biāo);
(Ⅲ) 問(wèn)是否存在斜率為的直線(xiàn),使被圓截得的弦為,且以為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,請(qǐng)寫(xiě)出求直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:以點(diǎn)C(t,)(t∈R,t≠0)為圓心的圓與軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn)
(1)求證:△OAB的面積為定值;
(2)設(shè)直線(xiàn)y=–2x+4與圓C交于點(diǎn)M,N,若OM=ON,求圓C的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
有一圓與直線(xiàn)l:4x-3y+6=0相切于點(diǎn)A(3,6),且經(jīng)過(guò)點(diǎn)B(5,2),求此圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com