某校高一、高二、高三3個年級共有430名學(xué)生,其中高一年級160名,高二年級學(xué)生180名,為了解學(xué)生身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中高二學(xué)生有32人,則該樣本中高三學(xué)生人數(shù)為
 
人.
考點:分層抽樣方法
專題:概率與統(tǒng)計
分析:求出高三年級學(xué)生人數(shù),利用分層抽樣的定義即可得到結(jié)論.
解答: 解:∵3個年級共有430名學(xué)生,其中高一年級160名,高二年級學(xué)生180名,
∴高三年級學(xué)生有430-160-180=90,
高二高三學(xué)生人數(shù)比為180:90=2:1,
在抽取的樣本中高二學(xué)生有32人,則該樣本中高三學(xué)生人數(shù)為16人,
故答案為:16
點評:本題主要考查分層抽樣的應(yīng)用,建立對應(yīng)的比例關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某商場預(yù)計全年分批購入每臺價值2000元的電視機共3600臺,每批購入的臺數(shù)相同,且每批均須付運費400元,儲存購入的電視機全年所付保管費與每批購入電視機的總價值(不含運費)成正比.若每批購入400臺,則全年需用去運費和保管費43600元.現(xiàn)在全年只有24000元可用于支付運費和保管費,請問能否恰當(dāng)安排每批進貨的數(shù)量,使這24000元的資金夠用?寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-4lnx-
1
2
ax2+x,其中a∈R.
(Ⅰ)若a=-
1
2
,求函數(shù)f(x)的最小值;
(Ⅱ)若存在兩個整數(shù)m,n,使得函數(shù)f(x)在區(qū)間(m,n)上是增函數(shù),且(m,n)⊆(0,a+4),求n的最大值,及n取最大值時a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合I={1,2,3,4,5,6},選擇集合I的兩個非空子集A和B,要使集合B中最小的數(shù)大于集合A中最大的數(shù),則不同的選擇方法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用6種不同顏色把圖中A、B、C、D四塊區(qū)域涂色,允許用同一顏色涂不同區(qū)域,但相鄰區(qū)域不能涂同一顏色,不同的涂法共有
 
種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算
π
(1+sin2x)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x2+2x+1(x>1)
5x+6(x≤1)
,則該函數(shù)的零點為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2cosx,1),
b
=(cosx,
3
sin2x),且f(x)=
a
b

(1)求f(x)在x∈[-
π
3
π
3
]的最大值;
(2)若f(x)=1-
3
,x∈[-
π
3
,
π
3
],求x;
(3)函數(shù)f(x)的圖象可以由函數(shù)y=2sin2x,x∈R的圖象經(jīng)過怎樣的變換得出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx-1與雙曲線x2-y2=1有且只有一個公共點,則實數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案