精英家教網 > 高中數學 > 題目詳情
3.某裝訂廠平均每小時大約裝訂圖書362冊,要求檢驗員每小時抽取40冊圖書,檢查其質量狀況,我們采用系統抽樣的方法,則抽樣的間隔為( 。
A.8B.9C.9.5D.10

分析 根據系統抽樣的定義和性質即可得到結論.

解答 解:∵362不能夠被40整除,
∴先剔除2個號碼,此時為360個,
∵360÷40=9,
∴抽樣的間隔為9,
故選:B

點評 本題主要考查系統抽樣的應用,比較基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

13.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)經過拋物線C2:y2=2px(p>0)的焦點,且雙曲線的漸近線與拋物線的準線圍成一個等邊三角形,則雙曲線C1的離心率是(  )
A.2B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.在△ABC中,已知AB=3,A=120°,且△ABC的面積為$\frac{9\sqrt{3}}{4}$,則△ABC的外接圓的半徑為3.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=3,$\overrightarrow{a}$+$\overrightarrow$=($\sqrt{3}$,1),則|$\overrightarrow{a}$-$\overrightarrow$|=4.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知三棱柱柱ABC-A1B1C1,如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,且AB=2AC,E為BB1的中點,F為CB1的中點.
(1)證明:平面AEF⊥平面CAA1C1;
(2)求二面角E一AF-B1的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.若不等式$\frac{1}{a-b}$+$\frac{1}{b-c}$+$\frac{λ}{c-a}$>0對任意a>b>c恒成立,則λ的取值范圍是( 。
A.(-∞,4)B.(-∞,4]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.計算$\frac{1+2i}{i}$=2-i.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.將參加夏令營的400名學生編號為:1,2,…,400.采用系統抽樣方法抽取一個容量為50的樣本,且隨機抽得的號碼為5.這400名學生分住在A、B、C三樓,從1到200在A樓,從201到300在B樓,從301到400在C樓,三個樓被抽中的人數依次為(  )
A.26,12,12B.25,13,12C.25,12,13D.24,13,13

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.已知p:(x+1)(x-3)<0,q:3x-4<m,若p是q的充分不必要條件,則實數m的取值范圍是[5,+∞).

查看答案和解析>>

同步練習冊答案