分析 利用S=$\frac{1}{2}×3b$sin120°=$\frac{9\sqrt{3}}{4}$,可得b.利用余弦定理a2=b2+c2-2bccosA,可得a,利用$\frac{a}{sinA}$=2R,可得R.
解答 解:在△ABC中,∵S=$\frac{1}{2}×3b$sin120°=$\frac{9\sqrt{3}}{4}$,∴b=3.
∴a2=b2+c2-2bccosA=32+32-2×32×cos120°=27,
∴a=3$\sqrt{3}$.
∴$\frac{a}{sinA}$=2R,
∴R=$\frac{3\sqrt{3}}{2sin12{0}^{°}}$=3.
故答案為:3.
點評 本題考查了正弦定理余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
B. | y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{8}$對稱 | |
C. | y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
D. | y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{8}$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 9.5 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 10 | D. | 13 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com