14.在△ABC中,已知AB=3,A=120°,且△ABC的面積為$\frac{9\sqrt{3}}{4}$,則△ABC的外接圓的半徑為3.

分析 利用S=$\frac{1}{2}×3b$sin120°=$\frac{9\sqrt{3}}{4}$,可得b.利用余弦定理a2=b2+c2-2bccosA,可得a,利用$\frac{a}{sinA}$=2R,可得R.

解答 解:在△ABC中,∵S=$\frac{1}{2}×3b$sin120°=$\frac{9\sqrt{3}}{4}$,∴b=3.
∴a2=b2+c2-2bccosA=32+32-2×32×cos120°=27,
∴a=3$\sqrt{3}$.
∴$\frac{a}{sinA}$=2R,
∴R=$\frac{3\sqrt{3}}{2sin12{0}^{°}}$=3.
故答案為:3.

點評 本題考查了正弦定理余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若圓(x-2)2+y2=1與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-{y}^{2}=1$(a>0)的漸近線相切,則a=$\sqrt{3}$;雙曲線C的漸近線方程是y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如題(19)圖,四邊形ABCD為菱形,四邊形BDEF為F平行四邊形,平面BDEF⊥平面ACE,設(shè)AC∩BD=O,AB=AC=2,BF=$\sqrt{3}$.
(Ⅰ)證明:平面BDEF⊥平面ABCD,
(Ⅱ)若點D到平面ACE的距離為$\frac{\sqrt{3}}{2}$,求二面角C-EF-O的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知物物線x2=4y的焦點為F,準(zhǔn)線為l,經(jīng)過l上任意一點P作拋物線x2=4y的兩條切線,切點分別為A、B.
(I)求證:PA⊥PB;
(2)求$\overrightarrow{AF}$$•\overrightarrow{FB}$-$\overrightarrow{PF}$2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=-2sin(2x+$\frac{π}{4}$),則( 。
A.y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{4}$對稱
B.y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{8}$對稱
C.y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{4}$對稱
D.y=f(x)在(0,$\frac{π}{8}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{8}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知復(fù)數(shù)z滿足(z-2i)i=1+i,則z的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在某次測量中得到某樣本數(shù)據(jù)如下:90,90,x,94,93.若該樣本數(shù)據(jù)的平均值為92,則該樣本數(shù)據(jù)的方差為$\frac{14}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某裝訂廠平均每小時大約裝訂圖書362冊,要求檢驗員每小時抽取40冊圖書,檢查其質(zhì)量狀況,我們采用系統(tǒng)抽樣的方法,則抽樣的間隔為( 。
A.8B.9C.9.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.定義某種運算S=a?b,運算原理如圖所示,則式子[(2tan$\frac{13π}{4}$)?lg$\frac{1}{10}$]+[lne?($\frac{1}{5}$)-1]的值為( 。
A.4B.8C.10D.13

查看答案和解析>>

同步練習(xí)冊答案