13.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)經(jīng)過拋物線C2:y2=2px(p>0)的焦點,且雙曲線的漸近線與拋物線的準線圍成一個等邊三角形,則雙曲線C1的離心率是(  )
A.2B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{3}$

分析 求得拋物線的焦點坐標和準線方程,可得p=2a,求得雙曲線的漸近線方程,聯(lián)立準線方程,可得等邊三角形的邊長和高,可得a=$\sqrt{3}$b,由a,b,c的關(guān)系和離心率公式,計算即可得到所求值.

解答 解:拋物線C2:y2=2px(p>0)的焦點為($\frac{p}{2}$,0),
由題意可得a=$\frac{p}{2}$,
雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{a}$x,
拋物線的準線方程為x=-$\frac{p}{2}$,
代入漸近線方程可得交點為(-a,b),(-a,-b),
由雙曲線的漸近線與拋物線的準線圍成一個等邊三角形,
可得邊長為2b,高為a,
即有a=$\sqrt{3}$b,c=$\sqrt{{a}^{2}+^{2}}$=$\frac{2\sqrt{3}}{3}$a,
即有e=$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$.
故選:D.

點評 本題考查雙曲線的離心率的求法,注意運用雙曲線的漸近線方程和拋物線的焦點和準線方程,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2,DC=3,E為AB的中點,將四邊形AEFD沿EF折起使面AEFD⊥面EBCF,過E作EF∥AD,
(1)若G為DF的中點,求證:EG∥面BCD;
(2)若AD=2,試求多面體AD-BCFE體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若圓(x-2)2+y2=1與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-{y}^{2}=1$(a>0)的漸近線相切,則a=$\sqrt{3}$;雙曲線C的漸近線方程是y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.雙曲線4x2-y2=1的一條漸近線與直線tx+y+1=0垂直,則t=±$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C的兩條漸近線為l1,l2,過右焦點F作FB∥l1且交l2于點B,過點B作BA⊥l2且交于l1于點A,若AF⊥x軸,則雙曲線C的離心率為( 。
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點A為雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)上任意一點,且它到雙曲線的兩條漸近線的距離之積為定值3,則$\frac{1}{a^2}$+$\frac{1}{b^2}$=( 。
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如題(19)圖,四邊形ABCD為菱形,四邊形BDEF為F平行四邊形,平面BDEF⊥平面ACE,設(shè)AC∩BD=O,AB=AC=2,BF=$\sqrt{3}$.
(Ⅰ)證明:平面BDEF⊥平面ABCD,
(Ⅱ)若點D到平面ACE的距離為$\frac{\sqrt{3}}{2}$,求二面角C-EF-O的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知物物線x2=4y的焦點為F,準線為l,經(jīng)過l上任意一點P作拋物線x2=4y的兩條切線,切點分別為A、B.
(I)求證:PA⊥PB;
(2)求$\overrightarrow{AF}$$•\overrightarrow{FB}$-$\overrightarrow{PF}$2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某裝訂廠平均每小時大約裝訂圖書362冊,要求檢驗員每小時抽取40冊圖書,檢查其質(zhì)量狀況,我們采用系統(tǒng)抽樣的方法,則抽樣的間隔為(  )
A.8B.9C.9.5D.10

查看答案和解析>>

同步練習(xí)冊答案