分析 (I)根據(jù)線面垂直的判定,證明BD⊥平面PAC,利用面面垂直的判定,證明平面PBD⊥平面PAC.
(II)過M作MN⊥AD于N,連PN,證明∠MPN為PM與平面PAD所成的角,即可得出結(jié)論.
解答 (I)證明:因?yàn)镻A⊥平面ABCD,所以PA⊥BD,
又ABCD為菱形,所以AC⊥BD,
因?yàn)镻A∩AC=A,所以BD⊥平面PAC,
因?yàn)锽D?平面PBD,所以平面PBD⊥平面PAC. …(4分)
(II)解:過M作MN⊥AD于N,連PN,
因?yàn)镻A⊥平面ABCD,所以PA⊥MN,故MN⊥平面PAD,
所以∠MPN為PM與平面PAD所成的角.…(8分)
又MN=AMsin60°=$\frac{{3\sqrt{3}}}{2}$AN=$\frac{3}{2}$
所以PN=$\sqrt{9+\frac{9}{4}}=\frac{{3\sqrt{5}}}{2}$
所以$tan∠MPN=\frac{MN}{PN}=\frac{{\sqrt{15}}}{5}$…(12分)
點(diǎn)評(píng) 本題考查線面垂直、面面垂直的判定,考查線面角,解題的關(guān)鍵是掌握線面垂直、面面垂直的判定,作出線面角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{12}{5}$ | B. | $\frac{{9\sqrt{10}}}{5}$ | C. | $\frac{{9\sqrt{2}}}{5}$ | D. | $\frac{{12\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 相交 | C. | 異面 | D. | 平行或相交 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com