3.已知i是虛數(shù)單位,若在z(1+2i)=i,則z的虛部為( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.$\frac{i}{5}$D.-$\frac{i}{5}$

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:z(1+2i)=i,
∴z(1+2i)(1-2i)=i(1-2i),
∴z=$\frac{i+2}{5}$,
則z的虛部為$\frac{1}{5}$,
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1,圓G:(x-1)2+y2=1若P是橢圓上任意一點(diǎn),過點(diǎn)P作圓G的切線,切點(diǎn)為Q,過點(diǎn)P作橢圓C右準(zhǔn)線的垂線,垂足為H,則$\frac{PQ}{PH}$的取值范圍為$[\frac{\sqrt{3}}{6},\frac{\sqrt{15}}{12}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將直線y=3x繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)45°,再向右平移1個(gè)單位長(zhǎng)度,所得到的直線方程為y=-2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,CD為AB邊上的高,|$\overrightarrow{CD}$|=1,$\overrightarrow{BD}$•$\overrightarrow{DA}$=1,則$\overrightarrow{CA}$•$\overrightarrow{CB}$=( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex-mx+1,g(x)=ax-xlna(a>0,且a≠1),函數(shù)f(x)在x=0處的切線與直線y=(1-e)x平行.
(1)求實(shí)數(shù)m的值;
(2)討論函數(shù)g(x)的單調(diào)性;
(3)證明:不等式f(x)+g(x)>2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x+$\frac{m}{x}$,且此函數(shù)圖象過(1,5)
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性(不必證明);
(3)若x2+4≥ax在(0,+∞)上恒成立,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的偶函數(shù),且對(duì)任意x1,x2∈[0,+∞),x1≠x2,都有(x1-x2)(f(x1)-f(x2))<0,則( 。
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(-2)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知全集U=R,A={x|-2<x<0},B={x|-1≤x≤1},求:
(1)A∪B;
(2)A∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=2x-1-1.
(1)分別作出y=f(|x|)和y=|f(x)|的圖象,
(2)求實(shí)數(shù)a的取值范圍,使得方程f(|x|)=a與|f(x)|=a都有且僅有兩個(gè)實(shí)數(shù)解.

查看答案和解析>>

同步練習(xí)冊(cè)答案