4.若函數(shù)y=f(x-1)的圖象過點(2,3),則( 。
A.f(2)=3B.f(3)=2C.f(1)=3D.f(3)=1

分析 由已知中函數(shù)y=f(x-1)的圖象過點(2,3),可得f(2-1)=3,整理可得答案.

解答 解:∵函數(shù)y=f(x-1)的圖象過點(2,3),
∴f(2-1)=3,
即f(1)=3,
故選:C.

點評 本題考查的知識點是函數(shù)的值,圖象上的點與方程的關(guān)系,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡:
(1)$\frac{cos(-α)tan(7π+α)}{sin(π+α)}$
(2)$\frac{sin(π-α)sin(π+α)}{tan(2π-α)sin(2π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,P是圓O外一點,PA,PB是圓O的兩條切線,切點分別為A,B,PA中點為M,過M作圓O的一條割線交圓O于C,D兩點,若PB=8,MC=2,則CD=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點P(-4t,t)在角α的終邊上,且α∈(0,π),求$\frac{sinα•(1-ta{n}^{2}α)}{\frac{1}{cosα}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若關(guān)于x的方程x2-ax+1-a=0在區(qū)間[2,+∞)上有解,則a的取值范圍是[$\frac{5}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)ω>0,函數(shù)f(x)=2tanωx的最小正周期為T,若f(x)是區(qū)間$(-\frac{π}{3},\frac{π}{4})$上的單調(diào)函數(shù),則T的取值范圍是[$\frac{2π}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=sinx+cosx的單調(diào)增區(qū)間為$[-\frac{3}{4}π+2kπ,\frac{π}{4}+2kπ]k∈Z$;已知$cos(α+\frac{π}{12})=\frac{3}{5}$,且$α∈(0,\frac{π}{2})$,則$f(2α+\frac{π}{12})$=$\frac{{24\sqrt{6}-7\sqrt{2}}}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.對于在R上的可導(dǎo)的函數(shù)f(x),若滿足(x-1)f′(x)≥0,則f(0)+f(2)>2f(1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.計算sin77°cos47°-sin13°cos43°的值等于( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案