分析 化簡可得f(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$),解不等式2kπ-$\frac{π}{2}$≤x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可得;由題意可得sin(α+$\frac{π}{12}$),進(jìn)而由二倍角公式可得cos(2α+$\frac{π}{6}$)和sin(2α+$\frac{π}{6}$),而$f(2α+\frac{π}{12})$=$\sqrt{2}$sin(2α+$\frac{π}{6}$+$\frac{π}{6}$)=$\sqrt{2}$×$\frac{\sqrt{3}}{2}$sin(2α+$\frac{π}{6}$)+$\sqrt{2}$×$\frac{1}{2}$cos(2α+$\frac{π}{6}$),代值計(jì)算可得.
解答 解:化簡可得f(x)=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
由2kπ-$\frac{π}{2}$≤x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可得2kπ-$\frac{3π}{4}$≤x≤2kπ+$\frac{π}{4}$,
∴函數(shù)的單調(diào)遞增區(qū)間為:$[-\frac{3}{4}π+2kπ,\frac{π}{4}+2kπ]k∈Z$;
∵$cos(α+\frac{π}{12})=\frac{3}{5}$,且$α∈(0,\frac{π}{2})$,
∴sin(α+$\frac{π}{12}$)=$\frac{4}{5}$,
∴cos(2α+$\frac{π}{6}$)=2cos2(α+$\frac{π}{12}$)-1=-$\frac{7}{25}$,
∴sin(2α+$\frac{π}{6}$)=2sin(α+$\frac{π}{12}$)cos(α+$\frac{π}{12}$)=$\frac{24}{25}$
∴$f(2α+\frac{π}{12})$=$\sqrt{2}$sin(2α+$\frac{π}{12}$+$\frac{π}{4}$)
=$\sqrt{2}$sin(2α+$\frac{π}{3}$)=$\sqrt{2}$sin(2α+$\frac{π}{6}$+$\frac{π}{6}$)
=$\sqrt{2}$×$\frac{\sqrt{3}}{2}$sin(2α+$\frac{π}{6}$)+$\sqrt{2}$×$\frac{1}{2}$cos(2α+$\frac{π}{6}$)
=$\frac{\sqrt{6}}{2}$×$\frac{24}{25}$+$\frac{\sqrt{2}}{2}$×(-$\frac{7}{25}$)=$\frac{{24\sqrt{6}-7\sqrt{2}}}{50}$
故答案為:$[-\frac{3}{4}π+2kπ,\frac{π}{4}+2kπ]k∈Z$;$\frac{{24\sqrt{6}-7\sqrt{2}}}{50}$
點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),涉及三角函數(shù)的單調(diào)性,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2)=3 | B. | f(3)=2 | C. | f(1)=3 | D. | f(3)=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 假設(shè)a,b,c中只有一個(gè)為0 | B. | 假設(shè)a,b,c都不為0 | ||
C. | 假設(shè)a,b,c都為0 | D. | 假設(shè)a,b,c不都為0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com