已知拋物線y2=4x的焦點(diǎn)F,A,B是拋物線上橫坐標(biāo)不相等的兩點(diǎn),若AB的垂直平分線與x軸的交點(diǎn)是(4,0),則|AB|是最大值為( 。
A、2B、4C、6D、10
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:依題意知,拋物線y2=4x的焦點(diǎn)F(1,0),設(shè)A(x1,y1)  B(x2,y2),利用線段的垂直平分線的性質(zhì)可得,|MA|2=|MB|2,整理可知x1+x2=4,利用不等式AB≤AF+BF即可求得答案.
解答: 解:∵拋物線y2=4x的焦點(diǎn)F(1,0),設(shè)A(x1,y1)  B(x2,y2),
∵線段AB的垂直平分線恰過(guò)點(diǎn)M(4,0),
∴|MA|2=|MB|2,即(4-x1)2+y12=(4-x2)2+y22,
y12=4x1,y22=4x2,代入并展開得:
16+x12-8x1+4x1=x22-8x2+16+4x2,
x12-x22=4x1-4x2,又x1≠x2
x1+x2=4,
∴線段AB中點(diǎn)的橫坐標(biāo)為
1
2
(x1+x2)=2,
∴AB≤AF+BF=(x1+
p
2
)+(x2+
p
2
)=4+2=6(當(dāng)A,B,F(xiàn)三點(diǎn)共線時(shí)取等號(hào)).
即|AB|是最大值為6.
故選:C.
點(diǎn)評(píng):本題考查拋物線的簡(jiǎn)單性質(zhì),考查線段的垂直平分線的性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想與運(yùn)算求解能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=
x
x+1
的圖象是由y=
-3x-2
x+1
的圖象怎樣平移得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐O-ABCD的頂點(diǎn)在球心O,底面正方形ABCD的四個(gè)頂點(diǎn)在球面上,且四棱錐O-ABCD的體積為
3
2
2
,AB=
3
,則球O的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱柱的左視圖如圖所示,則該正三棱柱的側(cè)面積為( 。
A、4
B、12
C、
4
3
3
D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知l,m是兩條不同的直線,α是一個(gè)平面,且l∥α,則下列命題正確的是( 。
A、若l∥m,則m∥α
B、若m∥α,則l∥m
C、若l⊥m,則m⊥α
D、若m⊥α,則l⊥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)算法的程序框圖如圖所示,如果輸入的x的值為2014,則輸出的i的結(jié)果為( 。
A、3B、5C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}共有n(n≥3,n∈N)項(xiàng),且a1=an=1,對(duì)每個(gè)i(1≤i≤n-1,i∈N),均有
ai+1
ai
∈{
1
2
,1,2}.
(1)當(dāng)n=3時(shí),寫出滿足條件的所有數(shù)列{an}(不必寫出過(guò)程);
(2)當(dāng)n=8時(shí),求滿足條件的數(shù)列{an}的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且與直線y=x-
3
相切.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右頂點(diǎn)分別為A,B,過(guò)點(diǎn)P(3,0)的直線l與橢圓C交于兩點(diǎn)M,N(M在N的右側(cè)),直線AM,BN相交于點(diǎn)Q,求證:點(diǎn)Q在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)的一種商品每件進(jìn)價(jià)為10元,據(jù)調(diào)查知每日銷售量m(件)與銷售價(jià)x(元)之間的函數(shù)關(guān)系為m=70-x,10≤x≤70.設(shè)該商場(chǎng)日銷售這種商品的利潤(rùn)為y(元).(單件利潤(rùn)=銷售單價(jià)-進(jìn)價(jià);日銷售利潤(rùn)=單件利潤(rùn)×日銷售量)
(1)求函數(shù)y=f(x)的解析式;
(2)求該商場(chǎng)銷售這種商品的日銷售利潤(rùn)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案