14.解方程:$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$=25-2x.

分析 構(gòu)造函數(shù)y=$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$y=25-2x.判斷y=$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$為增函數(shù),y=25-2x.減函數(shù),利用開(kāi)方判斷即可.

解答 解:y=$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$
y=25-2x.

根據(jù)函數(shù)的單調(diào)性得出:y=$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$為增函數(shù),
y=25-2x.減函數(shù),
交點(diǎn)只有一個(gè),
所以方程:$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$=25-2x.只有一個(gè)根.
x=4方程成立,

點(diǎn)評(píng) 本題考查了函數(shù)的思想,方程的求解,利用函數(shù)圖象求解問(wèn)題,關(guān)鍵發(fā)現(xiàn)特殊值的驗(yàn)證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,且PA=AD=2,點(diǎn)M、N分別在PD、PC上,2PN=NC,PM=MD
(1)求證:PC⊥平面AMN;
(2)求四面體P-ABN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某村欲修建一橫斷面為等腰梯形的水渠(如圖),為降低成本,必須盡量減少水與水渠壁的接觸面,若水渠的橫斷面面積設(shè)計(jì)為定值m,渠深3米,則水渠側(cè)壁的傾斜角α應(yīng)為多少時(shí),方能使修建成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知$\overrightarrow{a}$為非零向量,$\overrightarrow$=(3,4),且$\overrightarrow{a}$⊥$\overrightarrow$,求$\overrightarrow{a}$的單位向量$\overrightarrow{{a}_{0}}$=($\frac{4}{5}$,-$\frac{3}{5}$)或(-$\frac{4}{5}$,$\frac{3}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在8和200之間插入三個(gè)數(shù),使它們構(gòu)成等比數(shù)列,求這三個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
$\overrightarrow x$$\overrightarrow y$$\overrightarrow w$ $\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)2$\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)2$\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)(y-$\overrightarrow y$)$\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)(y-$\overrightarrow y$)
46.656.36.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)以知這種產(chǎn)品的年利率z與x、y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答
當(dāng)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù)(u1 v1),(u2 v2)…..(un vn),其回歸線v=α+βu的斜率和截距的最小二乘估計(jì)分別為:$\widehatβ=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\widehatα=\overline v-\widehatβ\overline u$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,設(shè)三棱柱ABC-A1B1C1的體積為2,P、Q分別是側(cè)棱AA1、CC1上的點(diǎn),且AP=QC1,則四棱錐B-APQC的體積為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在正六棱錐P-ABCDEF中,AB=1,若平面PAB⊥平面PDE,則PA=$\frac{{\sqrt{7}}}{2}$,該正六棱錐的體積是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.觀察下列等式
l+2+3+…+n=$\frac{1}{2}$n(n+l);
l+3+6+…+$\frac{1}{2}$n(n+1)=$\frac{1}{6}$n(n+1)(n+2);
1+4+10+…$\frac{1}{6}$n(n+1)(n+2)=$\frac{1}{24}$n(n+1)(n+2)(n+3);
可以推測(cè),1+5+15+…+$\frac{1}{24}$n(n+1)(n+2)(n+3)=$\frac{1}{120}$n(n+1)(n+2)(n+3)(n+4),(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案