20.如圖所示,在直角梯形ABCD中,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),由B→C→D→A沿梯形各邊運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為f(x),如果AB=8,BC=4,CD=5,DA=5,求函數(shù)f(x)的解析式.

分析 根據(jù)圖象關(guān)系建立f(x)與x的函數(shù)關(guān)系式,即可得到函數(shù)的解析式.

解答 解:根據(jù)圖2可知當(dāng)點(diǎn)P在CD上運(yùn)動(dòng)時(shí),△ABP的面積不變,與△ABC面積相等;且不變的面積是在x=4,x=9之間;
所以在直角梯形ABCD中BC=4,CD=5,AD=5.
過點(diǎn)D作DN⊥AB于點(diǎn)N,則有DN=BC=4,BN=CD=5,
在Rt△ADN中,AN=$\sqrt{A{D}^{2}-D{N}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3
AB=8,x在BC段時(shí),x∈[0,4]
所以△ABC的面積為:
f(x)=$\frac{1}{2}$AB•BP=$\frac{1}{2}$×8x=4x.
x∈(4,9],△ABC的面積為:
f(x)=$\frac{1}{2}AB•BC$=$\frac{1}{2}×8×4$=16,
x∈(9,14],△ABC的面積為:
f(x)=$\frac{1}{2}AB•\frac{4}{5}(14-x)$=$\frac{224-16x}{5}$,
函數(shù)f(x)的解析式:f(x)=$\left\{\begin{array}{l}{4x,x∈[0,4]}\\{16,x∈(4,9]}\\{\frac{224-16x}{5},x∈(9,14]}\end{array}\right.$.

點(diǎn)評(píng) 主要考查了函數(shù)圖象的讀圖能力,能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實(shí)際意義得到正確的結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知命題P:4x-a•2x+1≥0對(duì)?x∈[-1,1]恒成立,命題Q:f(x)=log2(ax2-2x+$\frac{1}{3}$)的值域是R,若滿足P且Q為假,P或Q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知不等式組$\left\{\begin{array}{l}x+2y-4≤0\\ x-y-1≤0\\ x≥1\end{array}\right.$表示的平面區(qū)域?yàn)棣,若在Ω中存在一點(diǎn)P(x,y)使得-2≤ax-y≤3成立,則實(shí)數(shù)a的取值范圍是-2≤a≤$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.Rt△ABC中,∠C為直角,CD為斜邊上的高h(yuǎn),角A、B、C的對(duì)邊分別為a,b,c,與Rt△ABC相對(duì)應(yīng)的是直角三棱錐P-ABC,即在頂點(diǎn)P處構(gòu)成3個(gè)直二面角.三條側(cè)棱長(zhǎng)分別為PA=a,PB=b,PC=c,高PO=h,四面體P-ABC的面△PAB,△PAC,△PBC的面積分別為s1,s2,s3,底面△ABC的面積為s.
(1)在直角三角形ABC中有結(jié)論$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}$,由此猜想四面體P-ABC中的結(jié)論:$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$;
在直角三角形ABC中有勾股定理c2=a2+b2,類比直角三角形的勾股定理,猜想,在四面體P-ABC中有:$s_1^2+s_2^2+s_3^2={s^2}$成立.
(2)上述猜想都是正確的嗎?試證明第二個(gè)猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義在(0,+∞)上的函數(shù)y=f(x)滿足f(x)=[f′(x)-1]x,且f(1)=0.則函數(shù)y=f(x)的最小值為(  )
A.-$\frac{1}{e}$B.-1C.-eD.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+cos(-θ)-3}{2+2co{s}^{2}(π+θ)+cos(2π-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$,則z=x-y的最大值為( 。
A.$\frac{1}{2}$B.1C.3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示,是我國(guó)古代軍隊(duì)用于屯糧的糧倉(cāng)的三視圖,糧倉(cāng)的底部建在地面上,圖中數(shù)據(jù)單位:m,cosα=$\frac{1}{6}$,cosβ=$\frac{3}{4}$,則該糧倉(cāng)的側(cè)面積為( 。
A.$\frac{21π}{2}$m2B.$\frac{23π}{2}$m2C.12πm2D.$\frac{25π}{2}$m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合M={(x,y)|y=x+1},N={(x,y)|y=x2-x-2},求M∩N.

查看答案和解析>>

同步練習(xí)冊(cè)答案