6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2ax+1,x<0}\\{(a-3)x+4a,x≥0}\end{array}\right.$滿足對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則實(shí)數(shù)a的取值范圍是(-∞,0].

分析 若對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2ax+1,x<0}\\{(a-3)x+4a,x≥0}\end{array}\right.$為減函數(shù),進(jìn)而根據(jù)分段函數(shù)單調(diào)性的定義,可得答案.

解答 解:若對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,
則函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2ax+1,x<0}\\{(a-3)x+4a,x≥0}\end{array}\right.$為減函數(shù),
則$\left\{\begin{array}{l}-\frac{2a}{2}≥0\\ a-3<0\\ 1≥4a\end{array}\right.$,
解得:a∈(-∞,0],
故答案為:(-∞,0]

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,熟練掌握并正確理解分段函數(shù)單調(diào)性的定義,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期為2,且當(dāng)x=$\frac{1}{3}$時(shí),f(x)的最大值為2.
(1)求f(x)的解析式.
(2)在閉區(qū)間[$\frac{21}{4}$,$\frac{23}{4}$]上是否存在f(x)的對(duì)稱軸?如果存在求出其對(duì)稱軸,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|-3<x≤2},B={x|-1≤x≤5}
(1)求A∩B,A∪B
(2)求A∩(∁RB),(∁RA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列敘述中錯(cuò)誤的是( 。
①∅∈{∅};②∅?{0};③若A∩B=∅,則A=∅或B=∅;④A∪B=∅,則A=∅且B=∅;⑤Card(∅)=1.
A.①②④B.②③⑤C.③④D.③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=ax3+bx2是奇函數(shù),則實(shí)數(shù)b=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.條件p:x1是方程f(x)=0的一個(gè)根,或x1是方程g(x)=0的一個(gè)根;條件q:x1是方程f(x)•g(x)=0的一個(gè)根.則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)=$\left\{\begin{array}{l}{|x-1|-2,|x|≤1}\\{\frac{1}{1+{x}^{2}},|x|>1}\end{array}\right.$,求f(3)和f(f($\frac{1}{2}$))的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\sqrt{{x}^{2}-2x-8}$的定義域?yàn)锳,g(x)=$\frac{1}{\sqrt{1-|x-a|}}$的定義域?yàn)锽,若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn.若以a2,a4是方程x2-4x+3=0的兩個(gè)根,則S5等于( 。
A.-20B.-10C.10D.20

查看答案和解析>>

同步練習(xí)冊(cè)答案