分析 由已知得sinθ<0,cos2θ<0,由此能求出角θ的范圍.
解答 解:∵θ∈(0,2π),點P(sinθ,cos2θ)在第三象限,
∴sinθ<0,cos2θ<0,
∵sinθ<0,∴π<θ<2π,
∴2π<2θ<4π.
∵cos2θ<0,∴$\frac{5π}{2}<2θ<\frac{7π}{2}$,
∴$\frac{5π}{4}<θ<\frac{7π}{4}$,
綜上θ∈($\frac{5π}{4}$,$\frac{7π}{4}$).
故答案為:($\frac{5π}{4}$,$\frac{7π}{4}$).
點評 本題考查角的取值取值范圍的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意三角函數(shù)的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,32] | B. | [12,21] | C. | [21,32] | D. | [12,32] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ-$\frac{π}{6}$,kπ+$\frac{π}{6}$],k∈Z | B. | [-$\frac{π}{6}$,$\frac{π}{6}$] | ||
C. | [2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$],k∈Z | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,+∞) | B. | ($\frac{5}{4}$,+∞) | C. | (-∞,-4] | D. | (-∞,$\frac{5}{4}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com