分析 (1)由已知得${b_{n+1}}-\frac{4}{3}=2({b_n}-\frac{4}{3})$,由此能證明{$_{n}-\frac{4}{3}$}是首項(xiàng)為$\frac{2}{3}$,公比q=2的等比數(shù)列.
(2)由{$_{n}-\frac{4}{3}$}是首項(xiàng)為$\frac{2}{3}$,公比q=2的等比數(shù)列,得$_{n}=\frac{{2}^{n}}{3}+\frac{4}{3}$,從而${a_n}{b_n}=\frac{1}{2}{b_n}+1$,由此能求出數(shù)列{bn}的通項(xiàng)公式及數(shù)列{anbn}的前n項(xiàng)和Sn.
解答 (1)證明:∵$\frac{4}{{{b_{n+1}}{b_n}}}=\frac{6}{{{b_{n+1}}}}-\frac{3}{b_n}$,即${b_{n+1}}=2{b_n}-\frac{4}{3}$,(2分)
∴${b_{n+1}}-\frac{4}{3}=2({b_n}-\frac{4}{3})$,
又${b_1}-\frac{4}{3}=\frac{2}{3}$≠0,
∴{$_{n}-\frac{4}{3}$}是首項(xiàng)為$\frac{2}{3}$,公比q=2的等比數(shù)列.(5分)
(2)解:由(1)知bn-$\frac{4}{3}$=$\frac{2}{3}×{2}^{n-1}$=$\frac{{2}^{n}}{3}$,
∴$_{n}=\frac{{2}^{n}}{3}+\frac{4}{3}$,n≥1,(7分)
∵${a_n}=\frac{1}{b_n}+\frac{1}{2}$,∴${a_n}{b_n}=\frac{1}{2}{b_n}+1$,(9分)
∴Sn=a1b1+a2b2+…+anbn
=$\frac{1}{2}({b_1}+{b_2}+…+{b_n})+n=\frac{{\frac{1}{3}(1-{2^n})}}{1-2}+\frac{5}{3}n$
=$\frac{1}{3}({2^n}+5n-1)$.(12分)
點(diǎn)評(píng) 本題考查等比數(shù)列的證明,考查數(shù)列的通項(xiàng)公式的求法及數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com