13.若直線ax+2y+1=0與直線x-y-2=0互相垂直,那么a的值等于(  )
A.-$\frac{1}{3}$B.2C.-$\frac{2}{3}$D.-2

分析 利用直線相互垂直與斜率的關(guān)系即可得出.

解答 解:∵直線ax+2y+1=0與直線x-y-2=0互相垂直,
∴$-\frac{a}{2}×1$=-1,解得a=2.
故選:B.

點評 本題考查了直線相互垂直與斜率的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若直線y=$\frac{1}{2}$x+b與曲線y=-$\frac{1}{2}$x+lnx相切,則b的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知F是雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點,O是雙曲線C的中心,直線y=$\sqrt{m}$x是雙曲線C的一條漸近線,以線段OF為邊作正三角形AOF,若點A在雙曲線C上,則m的值為(  )
A.3+2$\sqrt{3}$B.3-2$\sqrt{3}$C.3+$\sqrt{3}$D.3-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.2010年上海世博會舉辦時間為2010年5月1日--10月31日.此次世博會福建館招募了60名志愿者,某高校有13人入選,其中5人為中英文講解員,8人為迎賓禮儀,它們來自該校的5所學(xué)院(這5所學(xué)院編號為1、2、3、4、5號),人員分布如圖所示. 若從這13名入選者中隨機抽出3人.
(1)求這3人所在學(xué)院的編號正好成等比數(shù)列的概率;
(2)求這3人中中英文講解員人數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,程序輸出的結(jié)果s=11880,則判斷框中應(yīng)填( 。
A.i≥11?B.i≥10?C.i≤9?D.i≥9?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DE}$=$\overrightarrowemumebd$,$\overrightarrow{AE}$=$\overrightarrow{i}$,則$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$+$\overrightarrowh5eb6yv$=$\overrightarrow{i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出下列說法:
①終邊相同的角同一三角函數(shù)值相等;
②在三角形中,若sinA=sinB,則有A=B;
③不論是用角度制還是用弧度制度量一個角,它們與扇形的半徑的大小無關(guān);
④若sinα=sinβ,則α與β的終邊相同;
⑤若cos θ<0,則θ是第二或第三象限的角.
其中正確說法的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.給出下列命題:
①命題:“?x∈R,x2+x+1>0”的否定是“?x0∈R,x${\;}_{0}^{2}$+x0+1<0”;
②設(shè)回歸直線方程$\widehat{y}$=2-3x,當(dāng)變量x增加一個單位時,$\widehat{y}$平均增加3個單位;
③已知sin(θ-$\frac{π}{6}$)=$\frac{1}{3}$,則cos($\frac{π}{3}$-2θ)=$\frac{7}{9}$;
④cosα=cosβ成立的一個充分不必要條件是α=2kπ+β(k∈Z).
其中正確命題的個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知cos($\frac{π}{2}$+x)=$\frac{4}{5}$,x∈(-$\frac{π}{2}$,0),求$\frac{{sin2x-2{{sin}^2}x}}{1+tanx}$的值.

查看答案和解析>>

同步練習(xí)冊答案