14.函數(shù)y=2x-ex的單調(diào)遞減區(qū)間為( 。
A.(-∞,ln2)B.(0,ln2)C.(ln2,+∞)D.(-∞,1)

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的遞減區(qū)間即可.

解答 解:y′=2-ex,
令y′<0,解得:x>ln2,
故函數(shù)在(ln2,+∞)遞增,
故選:C.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=f(x-1)的定義域是(-1,3),則函數(shù)y=f(2x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,7)B.$(-\frac{3}{2},\frac{1}{2})$C.(0,4)D.(0,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列程序框圖輸出的a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.研究兩個(gè)變量y與x的線性關(guān)系,設(shè)根據(jù)樣本點(diǎn)(x1,y1),(x2,y2),…(xn,yn)求得的線性回歸方程為$\stackrel{∧}{y}$=$\widehat$x+$\stackrel{∧}{a}$,記Q=(y1-$\widehat$x1-$\stackrel{∧}{a}$)2+(y2-$\widehat$x2-$\stackrel{∧}{a}$)2+…+(yn-$\widehat$xn-$\stackrel{∧}{a}$)2,給出下列四個(gè)Q的值,最能體現(xiàn)y與x有較好線性關(guān)系的Q的值是(  )
A.0.3B.0.8C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.“回文數(shù)”是指從左到右與從右到左讀都一樣的正整數(shù).如22,121,3443,94249等.顯然2位“回文數(shù)”有9個(gè):11,22,33,…,999;3位“回文數(shù)”有90個(gè):101,111,121,…,191,202,…999;則
(1)4位“回文數(shù)”有90個(gè);
(2)2n+1(n∈N*)位“回文數(shù)”有9×10n個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆山西臨汾一中高三10月月考數(shù)學(xué)(理)試卷(解析版) 題型:解答題

選修4-5:不等式選講

設(shè)函數(shù).

(1)若,且對任意恒成立, 求實(shí)數(shù)的取值范圍;

(2)若,且關(guān)于的不等式有解, 求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆山西臨汾一中高三10月月考數(shù)學(xué)(理)試卷(解析版) 題型:解答題

中,角、所對的邊分別為、,且.

(1)若,求;

(2)若,且的面積為,求的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆重慶市高三10月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

選修4-5:不等式選講

已知

(Ⅰ)求的解集;

(Ⅱ)若,對恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.化簡:$\sqrt{8+2\sqrt{10+2\sqrt{5}}}$+$\sqrt{8-2\sqrt{10+2\sqrt{5}}}$.

查看答案和解析>>

同步練習(xí)冊答案