分析 由12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1),可得到f(n)=$\frac{1}{3}$n2+$\frac{1}{2}$n+$\frac{1}{6}$,進(jìn)而得到答案.
解答 解:由于12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1),
則f(n)=$\frac{1}{6}$(n+1)(2n+1)=$\frac{1}{3}$n2+$\frac{1}{2}$n+$\frac{1}{6}$,
故存在二次函數(shù)f(x)=$\frac{1}{3}$x2+$\frac{1}{2}$x+$\frac{1}{6}$,使得對(duì)任意n∈N*,都有$\frac{{1}^{2}+{2}^{2}+{3}^{2}+…+{n}^{2}}{n}$=f(n).
點(diǎn)評(píng) 本題考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分但不必要條件 | B. | 必要但不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,3,4} | B. | {2,3} | C. | {2,4} | D. | {1,2,3,4,6,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com