19.是否存在二次函數(shù)f(x),使得對(duì)任意n∈N*,都有$\frac{{1}^{2}+{2}^{2}+{3}^{2}+…+{n}^{2}}{n}$=f(n),若存在,求出f(x),若不存在,請(qǐng)說明理由.

分析 由12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1),可得到f(n)=$\frac{1}{3}$n2+$\frac{1}{2}$n+$\frac{1}{6}$,進(jìn)而得到答案.

解答 解:由于12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1),
則f(n)=$\frac{1}{6}$(n+1)(2n+1)=$\frac{1}{3}$n2+$\frac{1}{2}$n+$\frac{1}{6}$,
故存在二次函數(shù)f(x)=$\frac{1}{3}$x2+$\frac{1}{2}$x+$\frac{1}{6}$,使得對(duì)任意n∈N*,都有$\frac{{1}^{2}+{2}^{2}+{3}^{2}+…+{n}^{2}}{n}$=f(n).

點(diǎn)評(píng) 本題考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知e是自然對(duì)數(shù)的底數(shù),函數(shù)f(x)=ex-e-x+lg(x+$\sqrt{{x}^{2}+1}$),a,b都是實(shí)數(shù),若p:a+b<0,q:f(a)+f(b)<0,則p是q的( 。
A.充分但不必要條件B.必要但不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={1,2,3,4},B={2,4,6,8},則集合A∩B=( 。
A.{2,3,4}B.{2,3}C.{2,4}D.{1,2,3,4,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式2ln(-x)-x2+1>0的解集為∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax2+2bx+c(x∈R,a≠0)
(Ⅰ)若a=-1,c=0,且y=f(x)在[-1,3]上的最大值為g(b),求g(b);
(Ⅱ)若a>0,函數(shù)f(x)在[-8,-2]上不單調(diào),且它的圖象與x軸相切,求$\frac{f(1)}{b-2a}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知A(-3,2),B(0,-2),則|$\overrightarrow{AB}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若$\frac{(m+n)!}{n!}$=5040,則m!n=144.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如果對(duì)任意實(shí)數(shù)x、y都有f(x+y)=f(x)•f(y)且f(1)=2
(1)求f(2)、f(3)、f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2015)}{f(2014)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.$\frac{2+i}{1-2i}$( 。
A.1+iB.1-iC.-iD.i

查看答案和解析>>

同步練習(xí)冊(cè)答案