6.已知集合A={-1,1},B={m|m=x+y,x∈A,y∈A},則用列舉法表示集合B={0};若集合M={-1,1,3},N={a+2,a2+4}滿足M∩N={3},則實數(shù)a=1.

分析 根據(jù)A中的元素,以及m=x+y確定出B中元素即可;根據(jù)M,N,以及M與N的交集確定出a的范圍即可.

解答 解:∵A={-1,1},B={m|m=x+y,x∈A,y∈A},
∴B={0,-2,2};
∵集合M={-1,1,3},N={a+2,a2+4},且M∩N={3},
∴a+2=3或a2+4=3(無解,舍去),
解得:a=1,
故答案為:{0};1

點評 此題考查了交集及其運算,集合的表示法,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在銳角△ABC中,已知內(nèi)角A、B、C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(2sin(A+C),$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos$\frac{B}{2}$-1),且向量$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角B的大。
(2)如果b=1,求△ABC的面積S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.廢品率x%和每噸生鐵成本y(元)之間的回歸直線方程為$\stackrel{∧}{y}$=2x+256,這表明(  )
A.y與x的相關(guān)系數(shù)為2
B.y與x的關(guān)系是函數(shù)關(guān)系
C.廢品率每增加1%,生鐵成本每噸大約增加2元
D.廢品率每增加1%,生鐵成本大約增加258元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.關(guān)于x的不等式x2-(a+1)x+a<0的解集中,恰有3個整數(shù),則a的取值范圍是( 。
A.(4,5)B.(-3,-2)∪(4,5)C.(4,5]D.[-3,-2)∪(4,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}(3a-1)x+4a,x<1\\-{x^2}+2ax+1,x≥1\end{array}\right.$是R上的減函數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,1]B.$[{\frac{1}{5},\frac{1}{3}})$C.$({-∞,\frac{1}{3}})$D.$[{\frac{1}{5},1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)點B是A(2,3,5)關(guān)于坐標(biāo)平面xOy的對稱點,則B點坐標(biāo)為(2,3,-5),$|{\overrightarrow{AB}}|$=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知圓C:x2+y2+bx+ay-3=0(a>0,b>0)上任意一點關(guān)于直線l:x+y+2=0的對稱點都在圓C上,則$\frac{2}{a}+\frac{1}$的最小值為$\frac{3}{4}$+$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別是F1(-c,0),F(xiàn)2(c,0),點M是橢圓上的任意一點,△MF1F2的周長是2$\sqrt{2}$+2,且△MF1F2面積的最大值是1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若N是橢圓上一點,點M,N不重合,線段MN的垂直平分線的方程是2λx-2y+1=0,求△0MN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=lg(x2-2ax+4)的定義域為R,則實數(shù)a的取值范圍是( 。
A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-2,2)

查看答案和解析>>

同步練習(xí)冊答案