分析 (I)由${2^{({\sqrt{S_n}+1})}}={T_n}+2,n∈{N^*}$,可得${2}^{\sqrt{{a}_{1}}+1}$=T1+2=22,解得a1.利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式可得an,Sn.可得2n+1=Tn+2,利用遞推關(guān)系可得bn.
(II)令cn=anbn-14=(2n-1)•2n-14.可得:c1=-12,c2=-2,n≥3,cn>0.n≥3,Wn=c1+c2+…+cn-2c1-2c2.Wn=1×2+3×22+…+(2n-1)2n-14n+28,令Qn=1×2+3×22+…+(2n-1)2n,利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(I)∵${2^{({\sqrt{S_n}+1})}}={T_n}+2,n∈{N^*}$,∴${2}^{\sqrt{{a}_{1}}+1}$=T1+2=2+2=4=22,∴$\sqrt{{a}_{1}}$+1=2,解得a1=1.
∴an=1+(n-1)×2=2n-1.∴Sn=$\frac{n(1+2n-1)}{2}$=n2.
∴2n+1=Tn+2,
∴當(dāng)n≥2時(shí),2n+1-2n=Tn+2-(Tn-1+2)=bn,
∴bn=2n,當(dāng)n=1時(shí)也成立.
∴bn=2n.
(II)令cn=anbn-14=(2n-1)•2n-14.∴c1=-12,c2=-2,n≥3,cn>0.
∴n≥3,Wn=-c1-c2+c3+…+cn=c1+c2+…+cn-2c1-2c2.
Wn=1×2+3×22+…+(2n-1)2n-14n+28,
令Qn=1×2+3×22+…+(2n-1)2n,
2Qn=1×22+3×23+…+(2n-3)•2n+(2n-1)•2n+1,
∴-Qn=2(2+22+…+2n)-2-(2n-1)•2n+1=2×$\frac{2({2}^{n}-1)}{2-1}$-2-(2n-1)•2n+1=(3-2n)•2n+1-6,
∴Qn=(2n-3)•2n+1+6.∴Wn=$\left\{\begin{array}{l}{12,n=1}\\{14,n=2}\\{(2n-3)•{2}^{n+1}-14n+34,n≥3}\end{array}\right.$.
點(diǎn)評 本題考查了遞推關(guān)系、等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了分類討論、推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $-\frac{3}{5}$ | ||
C. | $-\frac{1}{10}$ | D. | 不確定,與μ值相關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 24 | C. | 30 | D. | 36 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com