分析 (I)取BC中點(diǎn)F,連結(jié)OF,D′O,D′F,則BC⊥平面D′OF,于是BC⊥OD′,又OD′⊥AE,于是OD′⊥平面ABCE,故而平面D′AE⊥平面ABCE;
(II)以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,求出平面ABD′的法向量$\overrightarrow{n}$,則CD′與平面ABD′所成角的正弦值等于|cos<$\overrightarrow{n}$,$\overrightarrow{CD′}$>|.
解答 解:(I取BC中點(diǎn)F,連結(jié)OF,D′O,D′F,則BC⊥OF,
∵D′B=D′C,∴BC⊥D′F
又∵OF?平面D′OF,D′F?平面D′OF,OF∩D′F=F,
∴BC⊥平面D′OF,∵D′O?平面D′OF,
∴BC⊥D′O,
∵DA=DE,即D′A=D′E,
∴D′O⊥AE,又∵AE?平面ABCE,BC?平面ABCE,AE與BC相交,
∴D′O⊥平面ABCE,∵D′O?平面D′AE
∴平面D′AE⊥平面ABCE.
(II)以O(shè)為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系O-xyz,
則A(1,-1,0),B(1,3,0),C(-1,3,0).D′(0,0,$\sqrt{2}$),
∴$\overrightarrow{D′A}$=(1,-1,-$\sqrt{2}$),$\overrightarrow{D′B}$=(1,3,-$\sqrt{2}$).$\overrightarrow{CD'}$=(-1,3,-$\sqrt{2}$).
設(shè)平面ABD′的法向量為$\overrightarrow{n}$=(x,y,z),
則$\overrightarrow{n}⊥\overrightarrow{D'A}$,$\overrightarrow{n}⊥\overrightarrow{D'B}$.
∴$\left\{\begin{array}{l}{x-y-\sqrt{2}z=0}\\{x+3y-\sqrt{2}z=0}\end{array}\right.$,令z=$\sqrt{2}$,得x=2,y=0,
∴$\overrightarrow{n}$=(2,0,$\sqrt{2}$).|$\overrightarrow{n}$|=$\sqrt{6}$,|$\overrightarrow{CD′}$|=2$\sqrt{3}$.$\overrightarrow{n}•\overrightarrow{CD′}$=-4.
∴cos<$\overrightarrow{n}$,$\overrightarrow{CD′}$>=$\frac{\overrightarrow{n}•\overrightarrow{CD′}}{|\overrightarrow{n}||\overrightarrow{CD′}|}$=-$\frac{\sqrt{2}}{3}$.
∴CD′與平面ABD′所成角的正弦值為$\frac{\sqrt{2}}{3}$.
點(diǎn)評(píng) 本題考查了面面垂直的判定,線面角的求解方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (0,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | [0,20) | [20,40) | [40,60} | [60,80) | [80,100) | [100,120) | [120,140) |
頻數(shù) | 4 | 18 | 42 | 66 | 48 | 20 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1≤x≤1} | B. | {x|0≤x≤1} | C. | {x|0<x≤1} | D. | {x|0≤x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | [0,2] | C. | {0,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com