已知點P(sin
4
,cos
4
)落在角θ的終邊上,且θ∈[0,2π),則tan(θ+
π
3
)的值為( 。
A、
3
+3
B、
3
-3
C、2+
3
D、2-
3
考點:任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:先求出點P的坐標,再利用任意角的三角函數(shù)的定義求出tanθ 的值.然后求解tan(θ+
π
3
)的值.
解答: 解:∵sin
4
=
2
2
,cos
4
=-
2
2
,
∴點P的坐標為(
2
2
,-
2
2
),
由任意角的三角函數(shù)的定義得tanθ=
y
x
=
-
2
2
2
2
=-1,
tan(θ+
π
3
)=
tanθ+tan
π
3
1-tanθtan
π
3
=
3
-1
1+
3
=2-
3

故選 D.
點評:本題考查任意角的三角函數(shù)的定義,以及特殊角的三角函數(shù)值,考查兩角和的正切函數(shù)的應用,屬于容易題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在曲線f(x)=x3-2x2+1上點(1,f(1))處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是R上的偶函數(shù),若對于x≥0,都有f(x+2)=f(x),且當x∈[0,2)時,f(x)=log2(x+1),則當x∈(-∞,+∞)時,f(-2011)+f(2012)的值為( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l與圓x2+y2+2x-4y+1=0相交于A,B兩點,若弦AB的中點為拋物線x2=4y的焦點,則直線l的方程為( 。
A、2x+3y-3=0
B、x-y-1=0
C、x+y-1=0
D、x-y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“a>1”是“函數(shù)f(x)=ax-2,(a>0且a≠1)在區(qū)間(0,+∞)上存在零點”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間(0,1)內(nèi)任取兩個數(shù),則這兩個數(shù)之和小于
1
2
的概率是( 。
A、
1
2
B、
1
4
C、
1
8
D、
1
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,若a=1,c=2,B=30°,則△ABC的面積為( 。
A、
1
2
B、
3
2
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊過點P(
1
3
,-
2
2
3
),則sinα的值為( 。
A、-
2
2
3
B、
1
3
C、
2
2
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)在點(2,1)處的切線與直線3x-y-2=0平行,則y′|x=2等于( 。
A、-3B、-1C、3D、1

查看答案和解析>>

同步練習冊答案