14.已知圓C:(x-6)2+y2=20,直線l:y=kx與圓C交于不同的兩點(diǎn)A、B.
(Ⅰ)求實(shí)數(shù)k的取值范圍;
(Ⅱ)若$\overrightarrow{OB}$=2$\overrightarrow{OA}$,求直線l的方程.

分析 (Ⅰ)根據(jù)題意可得圓心C(6,0)到直線l:y=kx的距離小于半徑$\sqrt{20}$,由此求得k的范圍.
(Ⅱ)把直線l:y=kx代入圓C,化簡(jiǎn)后利用韋達(dá)定理,再根據(jù)$\overrightarrow{OB}$=2$\overrightarrow{OA}$,可得x2=2x1,從而求得k的值,可得直線l的方程.

解答 解:(Ⅰ)由題意可得,圓心C(6,0)到直線l:y=kx的距離小于半徑$\sqrt{20}$,
即 $\frac{|6k-0|}{\sqrt{{k}^{2}+1}}$<$\sqrt{20}$,求得-$\frac{\sqrt{5}}{2}$<k<$\frac{\sqrt{5}}{2}$.
(Ⅱ)把直線l:y=kx代入圓C:(x-6)2+y2=20,化簡(jiǎn)可得(1+k2)x2-12x+16=0,
∴x1+x2=$\frac{12}{1{+k}^{2}}$,x1•x2=$\frac{16}{1{+k}^{2}}$.
若$\overrightarrow{OB}$=2$\overrightarrow{OA}$,則x2=2x1,則x1=$\frac{4}{1{+k}^{2}}$,x2=$\frac{8}{1{+k}^{2}}$,∴則x1•x2=$\frac{4}{1{+k}^{2}}$•$\frac{8}{1{+k}^{2}}$=$\frac{16}{{1+k}^{2}}$,∴k=±1,
故直線l:y=±x.

點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,韋達(dá)定理的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=log4(ax2+2x+3),a∈R
(1)若f(x)的值域?yàn)閇$\frac{1}{2}$,+∞),求a;
(2)若f(x)在區(qū)間(-$\frac{1}{2}$,+∞)上是增加的,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=lnx+(e-a)x-b,其中e為自然對(duì)數(shù)的底數(shù).若不等式f(x)≤0恒成立,則$\frac{a}$的最小值為-$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.①命題“?x≥1,x2+3≥4”的否定是“?x<1,x2+3<4”
②A、B、C三種不同型號(hào)的產(chǎn)品的數(shù)量之比依次為2:3:4,用分層抽樣抽出方法抽出一個(gè)容量為n的樣本,樣本中A種型號(hào)產(chǎn)品有16件,那么樣本的容量n=72
③命題“若x,y都是偶數(shù),則x+y是偶數(shù)”的否命題是“若x,y都不是偶數(shù),則x+y不是偶數(shù)”
④若非空集合M?N,則“a∈M或a∈N”是“a∈M∩N”的必要不充分條件
以上四個(gè)命題正確的是②④(把你認(rèn)為正確的命題序號(hào)都填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{y≤x}\\{y≥\frac{1}{2}x}\\{x+y≤1}\end{array}\right.$,則z=2x-y的最大值為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,都有an>0,Sn=$\sqrt{{a_1}^3+{a_2}^3+…+{a_n}^3}$
(I)求a1,a2的值;
(II)求數(shù)列{an}的通項(xiàng)公式an
(III)證明:ln2≤an•ln(1+$\frac{1}{{a}_{n}}$)<ln3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,且F2為拋物線y2=24x的焦點(diǎn),設(shè)點(diǎn)P為兩曲線的一個(gè)公共點(diǎn),若△PF1F2的面積為36$\sqrt{6}$,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1B.$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.直線l過(guò)拋物線y2=2px(p>0)的焦點(diǎn)且與該拋物線的軸垂直,若直線l與該拋物線圍成的封閉圖形的面積為$\frac{3}{2}$,則p等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},則M∩N=( 。
A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}

查看答案和解析>>

同步練習(xí)冊(cè)答案