【題目】關(guān)于下列命題:

若一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上同一個(gè)數(shù)后,方差恒不變;

滿足方程值為函數(shù)的極值點(diǎn);

命題p且q為真 是命題p或q為真的必要不充分條件;

若函數(shù)的反函數(shù)的圖像過點(diǎn),則的最小值為;

點(diǎn)是曲線上一動(dòng)點(diǎn),則的最小值是。

其中正確的命題的序號(hào)是____________注:把你認(rèn)為正確的命題的序號(hào)都填上。

【答案】①④⑤

【解析】

試題分析:,可知數(shù)據(jù)同增加一個(gè)數(shù),平均數(shù)也增加相同的數(shù),方差不變。正確;

反例為;,不是極值點(diǎn),錯(cuò)誤;

由題p且q為真可知命題全為真,可推出p或q為真,為充分條件,錯(cuò)誤;

反函數(shù)的圖像過點(diǎn),可得;, 正確;

點(diǎn)是曲線上一動(dòng)點(diǎn),則,可看作在拋物線上的點(diǎn),到準(zhǔn)線

和點(diǎn)距離和的最小值,可結(jié)合拋物線的定義,轉(zhuǎn)化為焦點(diǎn)到的距離為最小值,可得; 。正確;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高一(3)班有學(xué)生60,為了了解學(xué)生對目前高考制度的看法,現(xiàn)要從中抽取一個(gè)容量為10的樣本,問此樣本若采用簡單隨機(jī)抽樣,將如何獲得?試設(shè)計(jì)抽樣方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在四棱錐中,,,,,的中點(diǎn)。

(1)求證:

(2)線段上是否存在一點(diǎn),滿足?若存在,試求出二面角的余弦值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,側(cè)棱底面,,,

)若為線段上一點(diǎn),且,求證:平面;

)若分別是線段的中點(diǎn),設(shè)平面將三棱柱分割成左、右兩部分,記它們的體積分別為,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品, 生產(chǎn)的總成本萬元與年產(chǎn)之間的函數(shù)關(guān)系式可以近似地表示為,已知此生產(chǎn)線年產(chǎn)最大為.

(1)求年產(chǎn)為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;

(2)若毎噸產(chǎn)品平均出廠價(jià)為萬元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對定義在區(qū)間上的函數(shù),如果對任意,都有成立,那么稱函數(shù)在區(qū)間D上可被替代,D稱為替代區(qū)間.給出以下命題:

在區(qū)間上可被替代;

可被替代的一個(gè)替代區(qū)間

在區(qū)間可被替代,則;

,則存在實(shí)數(shù),使得在區(qū)間上被替代;

其中真命題的有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中是自然對數(shù)的底數(shù))。

)若關(guān)于的方程有唯一實(shí)根,求的值;

)若過原點(diǎn)作曲線的切線與直線垂直,證明:

)設(shè),當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】重慶某重點(diǎn)中學(xué)高一新生小王家在縣城A地,現(xiàn)在主城B地上學(xué)。周六小王的父母從早上8點(diǎn)從家出發(fā),駕車3小時(shí)到達(dá)主城B地,期間由于交通等原因,小王父母的車所走的路程單位:km與離家的時(shí)間單位:h的函數(shù)關(guān)系為。達(dá)到主城B地后,小王父母把車停在B地,在學(xué)校陪小王玩到16點(diǎn),然后開車從B地以的速度沿原路返回。

1求這天小王父母的車所走路程單位:km與離家時(shí)間單位:h的函數(shù)解析式;

2在距離小王家60處有一加油站,求這天小王父母的車途經(jīng)加油站的時(shí)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的展開式中,第二、三、四項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列

1的值;

2此展開式中是否有常數(shù)項(xiàng),為什么?

查看答案和解析>>

同步練習(xí)冊答案