17.已知函數(shù)f(x)=(1-$\frac{a}{x}$)ex(x>0),其中e為自然對數(shù)的底數(shù).當(dāng)a=2時,則曲線y=f(x)在(1,f(1))處的切線與坐標(biāo)軸圍成的面積為( 。
A.eB.2eC.3eD.4e

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率和切點,可得切線的方程,求得與x,y軸的交點,由三角形的面積公式,計算即可得到所求值.

解答 解:f(x)=(1-$\frac{2}{x}$)ex的導(dǎo)數(shù)為f′(x)=ex($\frac{2}{{x}^{2}}$+1-$\frac{2}{x}$),
可得在(1,-e)處的切線的斜率為e,
切線的方程為y+e=e(x-1),即為y=ex-2e,
令x=0,可得y=-2e;令y=0,可得x=2.
則切線與坐標(biāo)軸圍成的面積為$\frac{1}{2}$×2×2e=2e.
故選:B.

點評 本題考查導(dǎo)數(shù)的運用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,直線方程的運用,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在平面直角坐標(biāo)系xOy中,已知$x_1^2-ln{x_1}-{y_1}=0$,x2-y2-2=0,則${({x_1}-{x_2})^2}+{({y_1}-{y_2})^2}$的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱柱ABCD-A1B1C1D1中,AB∥CD,AB=BC=CC1=2CD,E為線段AB的中點,F(xiàn)是線段DD1上的動點.
(Ⅰ)求證:EF∥平面BCC1B1;
(Ⅱ)若∠BCD=∠C1CD=60°,且平面D1C1CD⊥平面ABCD,求平面BCC1B1與DC1B1平面所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.曲線y=2ex+x2在點(0,2)處的切線方程為y=2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)x∈R,則“1-x-2x2<0”是“|2-x|<1”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,已知tan$\frac{A+B}{2}$=sinC,給出以下四個結(jié)論:①$\frac{tanA}{tanB}$=1;②1<sinA+sinB$≤\sqrt{2}$;③sin2A+cos2B=1;④cos2A+cos2B=sin2C,其中正確的結(jié)論是②④.(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知復(fù)數(shù)z滿足(1+i)z=(1-i)2,則z的共軛復(fù)數(shù)的虛部為( 。
A.2B.-2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給定min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,b<a}\end{array}\right.$,已知函數(shù)f(x)=min{x,x2-4x+4}+4,若動直線y=m與函數(shù)y=f(x)的圖象有3個交點,它們的橫坐標(biāo)分別為x1,x2,x3,則x1+x2+x3的范圍為(4,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2sinx•sin($\frac{π}{3}$-x).
(1)求函數(shù)f(x)的對稱軸方程;
(2)如果0≤x≤$\frac{π}{2}$,求f(x)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案