【題目】如圖所示,在矩形ABCD中,AB=3,BC=4,E,F(xiàn)分別在線段BC,AD上,EF∥AB,將矩形ABEF沿EF折起,記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.
(1)在線段BC是否存在一點E,使得ND⊥FC ,若存在,求出EC的長并證明;
若不存在,請說明理由.
(2)求四面體NEFD體積的最大值.
【答案】(1)見解析; (2).
【解析】
(1)EC=3時符合;連接ED,交FC于點O,先證明FC⊥平面NED,再證明ND⊥FC.(2) 設(shè)NE=x,則FD=EC=4-x,其中0<x<4,再求出,再利用基本不等式求四面體NEFD體積的最大值.
(1)證明:EC=3時符合;連接ED,交FC于點O,如圖所示.
∵平面MNEF⊥平面ECDF,且NE⊥EF,平面MNEF∩平面ECDF=EF,NE平面MNEF,∴NE⊥平面ECDF.
∵FC平面ECDF,∴FC⊥NE.
∵EC=CD,∴四邊形ECDF為正方形,∴FC⊥ED.
又∵ED∩NE=E,ED,NE平面NED,
∴FC⊥平面NED.
∵ND平面NED,∴ND⊥FC.
(2)設(shè)NE=x,則FD=EC=4-x,其中0<x<4,
由(1)得NE⊥平面FEC,
∴四面體NEFD的體積為,
所以,
當(dāng)且僅當(dāng)x=4-x,即x=2時,四面體NEFD的體積最大,最大值為2
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若直線與曲線恒相切于同一定點,求直線的方程;
(2)若當(dāng)時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在定義域上的導(dǎo)函數(shù)為,若函數(shù)沒有零點,且,當(dāng)在上與在上的單調(diào)性相同時,則實數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是正方形所在平面外一點,在面上的投影為,,,,有以下四個命題:
(1)面;
(2)為中點,且;
(3)以,作為鄰邊的平行四邊形面積是32;
(4)的內(nèi)切球半徑為.
其中正確命題的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,為棱中點,底面是邊長為2的正方形,為正三角形,平面與棱交于點,平面與平面交于直線,且平面平面.
(1)求證:;
(2)求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣共有戶籍人口60萬,經(jīng)統(tǒng)計,該縣60歲及以上、百歲以下的人口占比,百歲及以上老人15人.現(xiàn)從該縣60歲及以上、百歲以下的老人中隨機抽取230人,得到如下頻數(shù)分布表:
年齡段(歲) | ||||
人數(shù)(人) | 125 | 75 | 25 | 5 |
(1)從樣本中70歲及以上老人中,采用分層抽樣的方法抽取21人,進一步了解他們的生活狀況,則80歲及以上老人應(yīng)抽多少人?
(2)從(1)中所抽取的80歲及以上老人中,再隨機抽取2人,求抽到90歲及以上老人的概率;
(3)該縣按省委辦公廳、省人民政府辦公廳《關(guān)于加強新時期老年人優(yōu)待服務(wù)工作的意見》精神,制定如下老年人生活補貼措施,由省、市、縣三級財政分級撥款:
①本縣戶籍60歲及以上居民,按城鄉(xiāng)居民養(yǎng)老保險實施辦法每月領(lǐng)取55元基本養(yǎng)老金;
②本縣戶籍80歲及以上老年人額外享受高齡老人生活補貼;
(a)百歲及以上老年人,每人每月發(fā)放345元的生活補貼;
(b)90歲及以上、百歲以下老年人,每人每月發(fā)放200元的生活補貼;
(c)80歲及以上、90歲以下老年人,每人每月發(fā)放100元的生活補貼.
試估計政府執(zhí)行此項補貼措施的年度預(yù)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是由矩形和菱形組成的一個平面圖形,其中, ,將其沿折起使得與重合,連結(jié),如圖2.
(1)證明圖2中的四點共面,且平面平面;
(2)求圖2中的四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,圓與圓關(guān)于直線:對稱.
(1)求圓的方程;
(2)過直線上的點分別作斜率為,4的兩條直線,,使得被圓截得的弦長與被圓截得的弦長相等.
(i)求點的坐標;
(ii)過點任作兩條互相垂直的直線分別與兩圓相交,判斷所得弦長是否恒相等,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 且.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,求證:;
(3)討論函數(shù)的極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com