分析 由三視圖可知幾何體是底面為正三角形,一條側(cè)棱垂直底面正三角形的一個(gè)頂點(diǎn)的三棱錐,明確底面積和高,求體積.
解答 解:三視圖可知幾何體是底面為正三角形,邊長(zhǎng)為2,
一條側(cè)棱垂直底面正三角形的三棱錐,三棱錐的高為2,
所以其體積為$\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×2=\frac{2\sqrt{3}}{3}$;
故答案為:$\frac{{2\sqrt{3}}}{3}$.
點(diǎn)評(píng) 本題考查三視圖對(duì)應(yīng)幾何體的體積;關(guān)鍵是明確對(duì)應(yīng)幾何體的形狀,然后利用體積公式求值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | nn | B. | (n-1)n | C. | nn-1 | D. | xn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 存在定義在[-1,1]上的函數(shù)f(x)使得對(duì)任意實(shí)數(shù)y有等式f(cosy)=cos2y成立 | |
B. | 存在定義在[-1,1]上的函數(shù)f(x)使得對(duì)任意實(shí)數(shù)y有等式f(siny)=sin2y成立 | |
C. | 存在定義在[-1,1]上的函數(shù)f(x)使得對(duì)任意實(shí)數(shù)y有等式f(cosy)=cos3y成立 | |
D. | 存在定義在[-1,1]上的函數(shù)f(x)使得對(duì)任意實(shí)數(shù)y有等式f(siny)=sin3y成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | 1-$\frac{\sqrt{2}}{2}$ | C. | 1+$\frac{\sqrt{2}}{2}$ | D. | 2+$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com