18.已知p:x∈{x|$\frac{1}{2}$<2x-a<1),q:x∈{x|y=log2(x2-x-6)}
(1)若a=4,判斷p是q的什么條件;
(2)若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

分析 (1)a=4時,對于p:$\frac{1}{2}$<2x-4<1,解得A=(3,5).對于q:x2-x-6>0,解得B=(-∞,-2)∪(3,+∞).即可判斷出關(guān)系.
(2)由$\frac{1}{2}$<2x-a<1,可得:a-1<x<a.¬p是¬q的必要不充分條件,可得q是p的必要不充分條件.即可得出.

解答 解:(1)a=4時,對于p:$\frac{1}{2}$<2x-4<1,解得:3<x<5,記作A=(3,5).
對于q:x2-x-6>0,解得x>3或x<-2,記作B=(-∞,-2)∪(3,+∞).
A?B,
∴p是q的充分不必要條件.
(2)由$\frac{1}{2}$<2x-a<1,可得:a-1<x<a.
¬p是¬q的必要不充分條件,
∴q是p的必要不充分條件.
∴a-1≥3或a≤-2,
解得a≥4,或a≤-2.
∴實數(shù)a的取值范圍是(-∞,-2]∪[4,+∞).

點評 本題考查了不等式的解法、函數(shù)的單調(diào)性、集合的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知0<α<β<π,且cosαcosβ=$\frac{1}{6}$,sinαsinβ=$\frac{1}{3}$,則tan(β-α)的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在數(shù)列{bn}中,已知b1=0,bn+1=3bn+2.
(1)求數(shù)列{bn}的通項公式;
(2)求{(2n-1)bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知a${\;}^{\sqrt{x+1}}$<a${\;}^{\sqrt{x-1}}$,則a的取值范圍是( 。
A.(0,+∞)B.[1,+∞)C.(-∞,1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某同學在一次研究性學習中發(fā)現(xiàn),以下四個式子的值都等于同一個常數(shù).
①sin210°+cos240°+sin10°cos40°
②sin220°+cos250°+sin20°cos50°
③sin240°+cos270°+sin40°cos70°
④sin2(-15°)+cos215°+sin(-15°)cos15°
(1)試從上述四個式子中選擇一個,求出這個常數(shù).
(2)根據(jù)(1)的計算結(jié)果,將該同學的發(fā)現(xiàn)推廣成三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知各項為正的數(shù)列{an}的前n項和為Sn,滿足an=2$\sqrt{{S}_{n}}$-1,則$\frac{2{S}_{n}+16}{{a}_{n}+3}$的最小值為( 。
A.4B.3C.2$\sqrt{3}$-2D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如果{x|x∈R且2x2+x-3<a}是非空集,那么實數(shù)a的取值范圍是( 。
A.(0,+∞)B.[0,+∞)C.(-3$\frac{1}{8}$,+∞)D.(-∞,-3$\frac{1}{8}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設(shè)等比數(shù)列{an}的前n項和為Sn.若$\frac{{S}_{6}}{{S}_{3}}$=9,則$\frac{{S}_{8}}{{S}_{4}}$=17.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.當x=2時,函數(shù)f(x)=ax3-bx+4有極值-$\frac{4}{3}$,則函數(shù)的解析式為( 。
A.f(x)=$\frac{1}{3}$x3-4x+4B.f(x)=$\frac{1}{3}$x2+4C.f(x)=3x3+4x+4D.f(x)=3x3-4x+4

查看答案和解析>>

同步練習冊答案