已知函數(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)上是減函數(shù),求實數(shù)的最小值;
(III)若,使成立,求實數(shù)的取值范圍.
(I) (II) (III)

試題分析:由已知函數(shù)的定義域均為,且.
(Ⅰ)函數(shù),
當(dāng)時,.所以函數(shù)的單調(diào)增區(qū)間是.       3分
(Ⅱ)因f(x)在上為減函數(shù),故上恒成立.
所以當(dāng)時,
,
故當(dāng),即時,,所以,故
所以的最小值為.
(Ⅲ)“若,使成立”等價于
“當(dāng)時,有”,
有(Ⅱ),當(dāng)時,有,,
問題等價于:“當(dāng)時,有
當(dāng)時,由(Ⅱ),上為減函數(shù).
,故.
當(dāng)時,由于上為增函數(shù),
的值域為,即
的單調(diào)性和值域知,唯一,使,且滿足:
當(dāng)時,,為減函數(shù);
當(dāng)時,,為增函數(shù);
所以,=,
所以,,與矛盾,不合題意.
綜上,.
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性與最值,考查恒成立問題,同時考查不等式的證明,解題的關(guān)鍵是正確求導(dǎo)數(shù),確定函數(shù)的單調(diào)性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),請用定義證明上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的一個單調(diào)遞增區(qū)間是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)寫出函數(shù)的定義域;(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(Ⅰ) 當(dāng)時,求函數(shù)的極值;
(Ⅱ)當(dāng)時,討論函數(shù)的單調(diào)性.
(Ⅲ)若對任意及任意,恒有 成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時,不等式f(x)>m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)上的最大值和最小值分別是     (   )  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

判斷函數(shù)f(x)=在區(qū)間(1,+∞)上的單調(diào)性,并用單調(diào)性定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
①當(dāng)時,求函數(shù)在上的最大值和最小值;
②討論函數(shù)的單調(diào)性;
③若函數(shù)處取得極值,不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案