下圖是一個幾何體的三視圖,這個幾何體是不是棱臺?為什么?

答案:
解析:

  解:將三視圖還原成原幾何體,如圖所示.由題意可知,此幾何體是一個六面體,且四個側面均為直角梯形.根據(jù)三視圖可知,原幾何體的下底面是邊長為4的正方形,上底面是邊長分別為3和2的矩形,則四條側棱延長后不可能相交于一點,故這個幾何體不是棱臺.

  點評:由三視圖畫出物體的空間立體圖形,首先需根據(jù)三視圖確定物體各個面的形狀,再判斷這些面的構成形式,最后根據(jù)物體的正面、側面和底面確定物體的長、寬、高.另外,還需要準確理解相應幾何體的定義,把握幾何體的結構特征.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(07年江西卷文)(12分)

下圖是一個直三棱柱(以為底面)被一平面所截得到的幾何體,截面為.已知,,,

(1)設點的中點,證明:平面;

(2)求與平面所成的角的大。

(3)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:江西省高考真題 題型:解答題

下圖是一個直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC。已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3,
(1)設點O是AB的中點,證明:OC∥平面A1B1C1;
(2)求二面角B-AC-A1的大小;
(3)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:江西省高考真題 題型:解答題

下圖是一個直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC。已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3,
(1)設點O是AB的中點,證明:OC∥平面A1B1C1;
(2)求AB與平面AA1C1C所成的角的大;
(3)求此幾何體的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下圖是一個直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.

(1)設點OAB的中點,證明OC∥平面A1B1C1;

(2)求AB與平面AA1C1C所成的角的大小;

(3)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

20. 下圖是一個直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC.已知A1B1=B1C1=1,∠AlBlC1=90°,AAl=4,BBl=2,CCl=3.

   (1)設點O是AB的中點,證明:OC∥平面A1B1C1;

   (2)求AB與平面AA1C1C所成的角的大。

   (3)求此幾何體的體積.

查看答案和解析>>

同步練習冊答案