8.已知變量x,y滿足$\left\{{\begin{array}{l}{1≤x+y≤3}\\{-1≤x-y≤1}\end{array}}$,若目標(biāo)函數(shù)z=2x+y取到最大值a,則函數(shù)y=$\frac{{{x^2}+a}}{{\sqrt{{x^2}+4}}}$的最小值為(  )
A.1B.2C.$\frac{3}{2}$D.$\frac{5}{2}$

分析 首先求出目標(biāo)函數(shù)取最大值時的a值,然后代入函數(shù)解析式求最小值.

解答 解:由不等式組得到區(qū)域如圖:所以目標(biāo)函數(shù)的最大值為2×2+1=5,所以a=5;
函數(shù)y=$\frac{{{x^2}+a}}{{\sqrt{{x^2}+4}}}$=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$=$\frac{1}{\sqrt{{x}^{2}+4}}+\sqrt{{x}^{2}+4}$,因?yàn)?\sqrt{{x}^{2}+4}≥2$,所以此函數(shù)為增函數(shù),所以最小值為$\frac{1}{2}+2=\frac{5}{2}$;
故選D.

點(diǎn)評 本題考查了簡單線性規(guī)劃問題以及函數(shù)的最值;注意:本題容易利用基本不等式求函數(shù)的最小值,導(dǎo)致錯誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓⊙O交BC于點(diǎn)E,DF是⊙O的切線交BC于點(diǎn)F,且EC=3EF=3.
(Ⅰ)若E為BC的中點(diǎn),BD=$\frac{7}{2}$,求DE的長;
(Ⅱ)求$\frac{DE}{DC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求下列數(shù)列{an}的通項(xiàng)公式:
(1)a1=1,an+1=2an+1;
(2)a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$
(3)a1=2,an+1=an2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=cos2x在點(diǎn)($\frac{π}{4},\frac{1}{2}}$)處的切線方程為x+y-$\frac{1}{2}$-$\frac{π}{4}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)z=$\frac{i}{1-i}$(其中i為虛數(shù)單位),則z•$\overline z$=( 。
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.分別求滿足下列條件的直線方程.
(Ⅰ)過點(diǎn)(0,1),且平行于l1:4x+2y-1=0的直線;
(Ⅱ)與l2:x+y+1=0垂直,且過點(diǎn)P(-1,0)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在($\frac{x}{2}$-$\frac{1}{\root{3}{x}}$)n的展開式中,只有第7項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式常數(shù)項(xiàng)是( 。
A.$\frac{55}{2}$B.-$\frac{55}{2}$C.-28D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=($\sqrt{3}$sinx,sinx),x∈R設(shè)函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$-$\frac{1}{2}$
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,an=(-1)n(2n-1).
(1)求S1,S2,S3
(2)猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊答案