12.某校高一年級學(xué)生全部參加了體育科目的達(dá)標(biāo)測試,現(xiàn)從中隨機(jī)抽取40名學(xué)生的測試成績,整理數(shù)據(jù)并按分?jǐn)?shù)段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]進(jìn)行分組,假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,則得到體育成績的折線圖(如圖)

(Ⅰ)體育成績大于或等于70分的學(xué)生常被稱為“體育良好”.已知該校高一年級有1000名學(xué)生,試估計高一年級中“體育良好”的學(xué)生人數(shù);
(Ⅱ)為分析學(xué)生平時的體育活動情況,現(xiàn)從體育成績在[60,70)和[80,90)的樣本學(xué)生中隨機(jī)抽取2人,求在抽取的2名學(xué)生中,至少有1人體育成績在[60,70)的概率;
(Ⅲ)假設(shè)甲、乙、丙三人的體育成績分別為a,b,c,且分別在[70,80),[80,90),[90,100]三組中,其中a,b,c∈N.當(dāng)數(shù)據(jù)a,b,c的方差s2最大時,寫出a,b,c的值.(結(jié)論不要求證明)
(注:s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為數(shù)據(jù)x1,x2,…,xn的平均數(shù))

分析 (Ⅰ)由折線圖知,樣本中體育成績大于或等于70分的學(xué)生有30人,由此能求出該校高一年級學(xué)生中,“體育良好”的學(xué)生人數(shù).
(Ⅱ)設(shè)“至少有1人體育成績在[60,70)”為事件M,記體育成績在[60,70)的學(xué)生為A1,A2,體育成績在[80,90)的學(xué)生為B1,B2,B3,由此利用列舉法能求出在抽取的2名學(xué)生中,至少有1人體育成績在[60,70)的概率.
(Ⅲ)由題意,能寫出數(shù)據(jù)a,b,c的方差s2最大時,a,b,c的值.

解答 解:(Ⅰ)由折線圖知,樣本中體育成績大于或等于70分的學(xué)生有30人,
所以該校高一年級學(xué)生中,“體育良好”的學(xué)生人數(shù)大約為1000×$\frac{30}{40}$=750人;
(Ⅱ)設(shè)“至少有1人體育成績在[60,70)”為事件M,
記體育成績在[60,70)的學(xué)生為A1,A2,體育成績在[80,90)的學(xué)生為B1,B2,B3,
則從這兩組學(xué)生中隨機(jī)抽取2人,所有可能的結(jié)果如下:
(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),
(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3)共10種,
而事件M所包含的結(jié)果有(A1,A2),(A1,B1),(A1,B2),
(A1,B3),(A2,B1),(A2,B2),(A2,B3)共7種,
因此事件M發(fā)生的概率為P(M)=$\frac{7}{10}$;
(Ⅲ)a,b,c的值分別是為70,80,100.

點(diǎn)評 本題考查折線圖的應(yīng)用,考查概率的求法,是中檔題,解題時要認(rèn)真審題,注意注意對立事件概率計算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(Ⅰ)集合M={1,2,(m2-3m-1)+(m2-5m-6)i},N={3,-1},M∩N={3},求實數(shù)m的值.
(Ⅱ)已知12=$\frac{1}{6}$×1×2×3,12+22=$\frac{1}{6}$×2×3×5,12+22+32=$\frac{1}{6}$×3×4×7,12+22+32+42=$\frac{1}{6}$×4×5×9,由此猜想12+22+…+n2(n∈N*)的表達(dá)式并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若等比數(shù)列{an}的前n項和Sn=a•3n-2,則a2=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)F(x)=ex滿足F(x)=g(x)+h(x),且g(x),h(x)分別是R上的偶函數(shù)和奇函數(shù),若?x∈(0,2]使得不等式g(2x)-ah(x)≥0恒成立,則實數(shù)a的取值范圍是$({-∞,2\sqrt{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,(x>0)\\{2^{-x}},(x≤0)\end{array}$,則不等式f(x)>1的解集為(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2sin2x(cos2x-sin2x)+1
(1)求函數(shù)f(x)的單調(diào)增區(qū)間和對稱中心;
(2)若f(x)得圖象C經(jīng)過向右平移$\frac{π}{4}$得函數(shù)g(x)的圖象,求g(x)的解析式,并求出當(dāng)x∈[0,$\frac{π}{4}$]時,g(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a<0,-1<b<0,試比較a、ab、ab2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C所對的邊分別是a,b,c,已知acosC+ccosA=2bcosA.
(Ⅰ)求角A的值;
(Ⅱ)若a=1,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知sin($\frac{π}{4}$-x)=-$\frac{2}{3}$,$\frac{π}{4}$<x<$\frac{π}{2}$,則sin($\frac{π}{4}$+x)=$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案