A. | -1 | B. | 0 | C. | 1 | D. | 2 |
分析 由題意可得曲線和直線均過原點(diǎn),判斷f(x)為奇函數(shù)且在R上遞增,當(dāng)直線y=kx與曲線相切,切點(diǎn)為(0,0),求得切線的斜率為2,討論k的變化,即可得到符合題意的k的最大值.
解答 解:由曲線f(x)=ex-$\frac{1}{e^x}$與直線y=kx均過原點(diǎn)(0,0),
由f(-x)=e-x-ex=-(ex-e-x)=-f(x),
可得f(x)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,
且f′(x)=ex+e-x>0,f(x)在R上遞增,
由題意可得f(x)與直線y=kx有且僅有交點(diǎn)為(0,0),
當(dāng)直線y=kx與曲線相切,切點(diǎn)為(0,0),
切線的斜率為k=e0+e0=2,
當(dāng)k<0時(shí),顯然只有一個(gè)交點(diǎn)(0,0),
當(dāng)0≤k≤2時(shí),顯然只有一個(gè)交點(diǎn)(0,0),
當(dāng)k>2時(shí),有3個(gè)交點(diǎn).
則符合條件的k的最大值為2.
故選:D.
點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查函數(shù)方程的轉(zhuǎn)化思想以及數(shù)形結(jié)合的思想方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+1)2+(y-2)2=5 | B. | (x-2)2+(y-1)2=5 | C. | (x-1)2+(y+2)2=5 | D. | (x-2)2+(y+1)2=5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{{\sqrt{2}}}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com