不論a為何值時,函數(shù)y=(a-1)2x-
a
2
的圖象過一定點(diǎn),這個定點(diǎn)的坐標(biāo)
 
考點(diǎn):指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知中,不論a為何值時,函數(shù)y=(a-1)2x-
a
2
的圖象恒過一定點(diǎn),我們可將函數(shù)的解析式變形為(2x-
1
2
)a
a-(2x+y)=0的形式,則根據(jù)2x-
1
2
=0,2x-y=0,構(gòu)造一個關(guān)于x,y的方程,解方程即可求出定點(diǎn)坐標(biāo).
解答: 解:函數(shù)y=(a-1)2x-
a
2
的解析式可化為(2x-
1
2
)a
a-(2x+y)=0的
若不論a為何值時,函數(shù)y=(a-1)2x-
a
2
的圖象恒過一定點(diǎn),
即不論a為何值時,(2x-
1
2
)a
a-(2x+y)=0恒成立
2x-
1
2
=0,2x+y=0
解得x=-1,y=-
1
2
,即恒過的定點(diǎn)坐標(biāo)是(-1,-
1
2

故答案為(-1,-
1
2
).
點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)圖象過點(diǎn),處理的方法是將函數(shù)的解析式化成兩部分:一部分含參數(shù),一部分不含參數(shù),讓兩部分的系數(shù)均為0,構(gòu)造方程組.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)某地區(qū)對12歲兒童瞬時記憶能力進(jìn)行調(diào)查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該學(xué)生瞬時記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.
視覺
聽覺
視覺記憶能力
偏低中等偏高超常
聽覺
記憶
能力
偏低0751
中等183b
偏高2a01
超常0211
由于部分?jǐn)?shù)據(jù)技失,只知道從這40位學(xué)生中隨機(jī)抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
2
5

(1)試確定a、b的值;
(2)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生的概率;
(3)從視覺記憶能力偏高的學(xué)生中任意抽取3人,設(shè)具有聽覺記憶能力中等的學(xué)生人數(shù)為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果兩條直線2x+3y-m=0和x-my+12=0的交點(diǎn)在x軸上,那么m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px(p>0)的焦點(diǎn),作一條直線交拋物線于A、B兩點(diǎn),以AB為直徑的圓與拋物線的準(zhǔn)線相切于點(diǎn)C(-2,-2).則此直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2+2x(a≠0),g(x)=lnx.
(Ⅰ)若h(x)=f(x)-g(x)是減函數(shù),求a的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)a>0,使得方程
g(x)
x
=f′(x)-(2a+1)在區(qū)間(
1
e
,e)內(nèi)有且只有兩個不相等的實(shí)數(shù)根?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連續(xù)拋擲一枚硬幣兩次,則兩次正面都向上的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程(k2-1)x2+3y2=1是焦點(diǎn)在y軸上的橢圓,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x=
4-y2
(-2≤y≤2)和直線y=k(x-1)+3只有一個交點(diǎn),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=sin2ωx+1(ω>0)的最小正周期是
π
2
,則ω的值為( 。
A、1
B、2
C、
1
2
D、4

查看答案和解析>>

同步練習(xí)冊答案