如圖,曲線與曲線相交于、、四個(gè)點(diǎn).
⑴ 求的取值范圍;
⑵ 求四邊形的面積的最大值及此時(shí)對(duì)角線的交點(diǎn)坐標(biāo).

(1)(2) 的最大值為16.,對(duì)角線交點(diǎn)坐標(biāo)為.

解析試題分析:(1)通過直線與拋物線聯(lián)立,借助判別式和韋達(dá)定理求解參數(shù)的范圍;(2)根據(jù)圖形的對(duì)稱性,明確四邊系A(chǔ)BCD的面積為,然后借助韋達(dá)定理將三角形面積表示為含有參數(shù)的表達(dá)式,最后化簡(jiǎn)通過構(gòu)造函數(shù), 利那用求導(dǎo)的方法研究最值. 分別求出對(duì)角線的直線方程,進(jìn)而求交點(diǎn)坐標(biāo).
試題解析:(1) 聯(lián)立曲線消去可得,
,根據(jù)條件可得,解得.
(4分)
(2) 設(shè),,,

.
(6分)
,則,                 (7分)
設(shè),
則令,
可得當(dāng)時(shí),的最大值為,從而的最大值為16.
此時(shí),即,則.                               (9分)
聯(lián)立曲線的方程消去并整理得
,解得,,
所以點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為
,
則直線的方程為,                (11分)
當(dāng)時(shí),,由對(duì)稱性可知的交點(diǎn)在軸上,
即對(duì)角線交點(diǎn)坐標(biāo)為.          (12分)
考點(diǎn):1.直線與圓錐曲線的綜合應(yīng)用能力;2.直線與圓錐曲線的相關(guān)知識(shí);3.圓錐曲線中極值的求取.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),為動(dòng)點(diǎn),且直線與直線的斜率之積為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過點(diǎn)的直線與曲線相交于不同的兩點(diǎn),.若點(diǎn)軸上,且,求點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點(diǎn),直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),線段AB的中點(diǎn)M在直線l上.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的對(duì)稱中心為坐標(biāo)原點(diǎn),上焦點(diǎn)為,離心率.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)軸上的動(dòng)點(diǎn),過點(diǎn)作直線與直線垂直,試探究直線與橢圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為橢圓的左,右焦點(diǎn),為橢圓上的動(dòng)點(diǎn),且的最大值為1,最小值為-2.
(I)求橢圓的方程;
(II)過點(diǎn)作不與軸垂直的直線交該橢圓于兩點(diǎn),為橢圓的左頂點(diǎn)。試判斷的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

極坐標(biāo)系中橢圓C的方程為
以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點(diǎn),且直線的傾斜角互補(bǔ),
求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在直角坐標(biāo)系中,曲線的參數(shù)方程為:為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,直線的極坐標(biāo)方程為:
(Ⅰ)寫出曲線和直線在直角坐標(biāo)系下的方程;
(II)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的離心率,且橢圓C上一點(diǎn)到點(diǎn)Q的距離最大值為4,過點(diǎn)的直線交橢圓于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

曲線C上任一點(diǎn)到定點(diǎn)(0,)的距離等于它到定直線的距離.
(1)求曲線C的方程;
(2)經(jīng)過P(1,2)作兩條不與坐標(biāo)軸垂直的直線分別交曲線C于A、B兩點(diǎn),且,設(shè)M是AB中點(diǎn),問是否存在一定點(diǎn)和一定直線,使得M到這個(gè)定點(diǎn)的距離與它到定直線的距離相等.若存在,求出這個(gè)定點(diǎn)坐標(biāo)和這條定直線的方程.若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案