【題目】(文科)已知四棱錐的底面ABCD為直角梯形,,,,為正三角形.
(1)點(diǎn)M為棱AB上一點(diǎn),若平面SDM,,求實(shí)數(shù)λ的值;
(2)若,求四棱錐的體積.
【答案】(1);(2).
【解析】
(1)由線面平行的性質(zhì)定理得,從而知是中點(diǎn),可求;
(2)由已知證得所以平面SCD,即得平面平面ABCD.,因此在平面SCD內(nèi)過(guò)點(diǎn)S作SE垂直CD交CD的延長(zhǎng)線于點(diǎn)E,就有平面ABCD,這就是棱錐的高.由,得,再由,,得,從而有,于是棱錐體積可求.
(1)若平面SDM,平面ABCD,平面平面,
所以,
因?yàn)?/span>,所以四邊形BCDM為平行四邊形.
又因?yàn)?/span>,
所以M為AB的中點(diǎn).
因?yàn)?/span>,
所以.
(2)因?yàn)?/span>,,所以,
又,,
所以平面SCD,
又平面ABCD
所以平面平面ABCD.
在平面SCD內(nèi)過(guò)點(diǎn)S作SE垂直CD交CD的延長(zhǎng)線于點(diǎn)E,
又平面平面,
所以平面ABCD,
連接AE,在和中,
因?yàn)?/span>,所以,
由題易知,,
所以,
所以,
底面ABCD為直角梯形,,,,
,
四棱錐的體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類(lèi)體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱(chēng)為“體育迷”.
(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)現(xiàn)在從該地區(qū)非體育迷的電視觀眾中,采用分層抽樣方法選取5名觀眾,求從這5名觀眾選取兩人進(jìn)行訪談,被抽取的2名觀眾中至少有一名女生的概率.
附:
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高三學(xué)生為了迎接高考,要經(jīng)常進(jìn)行模擬考試,鍛煉應(yīng)試能力,某學(xué)生從升入高三到高考要參加10次模擬考試,下面是高三第一學(xué)期某學(xué)生參加5次模擬考試的數(shù)學(xué)成績(jī)表:
模擬考試第x次 | 1 | 2 | 3 | 4 | 5 |
考試成績(jī)y分 | 90 | 100 | 105 | 105 | 100 |
(1)已知該考生的模擬考試成績(jī)y與模擬考試的次數(shù)x滿(mǎn)足回歸直線方程,若高考看作第11次模擬考試,試估計(jì)該考生的高考數(shù)學(xué)成績(jī);
(2)把這5次模擬考試的數(shù)學(xué)成績(jī)單放在5個(gè)相同的信封中,從中隨機(jī)抽取3份試卷的成績(jī)單進(jìn)行研究,設(shè)抽取考試成績(jī)不等于平均值的個(gè)數(shù)為,求出的分布列與數(shù)學(xué)期望.
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,,,,為正三角形,且.
(1)證明:直線平面;
(2)若四棱錐的體積為,是線段的中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的周期為,圖象的一個(gè)對(duì)稱(chēng)中心為.將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍(縱坐標(biāo)不變),再將所得到的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象.
(1)求函數(shù)與的解析式;
(2)(理)求證:存在,使得,,能按照某種順序成等差數(shù)列.
(3)(文)定義:當(dāng)函數(shù)取得最值時(shí),函數(shù)圖像上對(duì)應(yīng)的點(diǎn)稱(chēng)為函數(shù)的最值點(diǎn),如果函數(shù)的圖像上至少有一個(gè)最大值點(diǎn)和一個(gè)最小值點(diǎn)在圓的內(nèi)部或圓周上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在上,以為切點(diǎn)的的切線的斜率為,過(guò)外一點(diǎn)(不在軸上)作的切線、,點(diǎn)、為切點(diǎn),作平行于的切線(切點(diǎn)為),點(diǎn)、分別是與、的交點(diǎn)(如圖):
(1)用、的縱坐標(biāo)、表示直線的斜率;
(2)若直線與的交點(diǎn)為,證明是的中點(diǎn);
(3)設(shè)三角形面積為,若將由過(guò)外一點(diǎn)的兩條切線及第三條切線(平行于兩切線切點(diǎn)的連線)圍成的三角形叫做“切線三角形”,如,再由、作“切線三角形”,并依這樣的方法不斷作切線三角形……,試?yán)?/span>“切線三角形”的面積和計(jì)算由拋物線及所圍成的陰影部分的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中, 、分別是、的中點(diǎn).
(1)求證:四邊形是菱形;
(2)求異面直線與所成角的大小 (結(jié)果用反三角函數(shù)值表示) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年10月18日-27日,第七屆世界軍人運(yùn)動(dòng)會(huì)在湖北武漢舉辦,中國(guó)代表團(tuán)共獲得133金64銀42銅,共239枚獎(jiǎng)牌.為了調(diào)查各國(guó)參賽人員對(duì)主辦方的滿(mǎn)意程度,研究人員隨機(jī)抽取了500名參賽運(yùn)動(dòng)員進(jìn)行調(diào)查,所得數(shù)據(jù)如下所示,現(xiàn)有如下說(shuō)法:①在參與調(diào)查的500名運(yùn)動(dòng)員中任取1人,抽到對(duì)主辦方表示滿(mǎn)意的男性運(yùn)動(dòng)員的概率為;②在犯錯(cuò)誤的概率不超過(guò)1%的前提下可以認(rèn)為“是否對(duì)主辦方表示滿(mǎn)意與運(yùn)動(dòng)員的性別有關(guān)”;③沒(méi)有99.9%的把握認(rèn)為“是否對(duì)主辦方表示滿(mǎn)意與運(yùn)動(dòng)員的性別有關(guān)”;則正確命題的個(gè)數(shù)為( )附:
男性運(yùn)動(dòng)員 | 女性運(yùn)動(dòng)員 | |||||
對(duì)主辦方表示滿(mǎn)意 | 200 | 220 | ||||
對(duì)主辦方表示不滿(mǎn)意 | 50 | 30 | ||||
0.100 | 0.050 | 0.010 | 0.001 | |||
k | 2.706 | 3.841 | 6.635 | 10.828 | ||
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若不等式對(duì)于任意成立,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com