12.已知圓C:x2+y2-2ax+4ay+5a2-25=0的圓心在直線l1:x+y+2=0上,則圓C截直線l2:3x+4y-5=0所得的弦長為8.

分析 先求出圓C:x2+y2-2ax+4ay+5a2-25=0的圓心C(2,-4),半徑r=5,再過河卒子 同圓C(2,-4)直線l2:3x+4y-5=0的距離d=3,由此能求出圓C截直線l2:3x+4y-5=0所得的弦長.

解答 解:∵圓C:x2+y2-2ax+4ay+5a2-25=0的圓心C(a,-2a)在直線l1:x+y+2=0上,
∴a-2a+2=0,解得a=2,
∴圓C:x2+y2-2ax+4ay+5a2-25=0的圓心C(2,-4),
半徑r=$\frac{1}{2}\sqrt{16+64+20}$=5,
圓心C(2,-4)直線l2:3x+4y-5=0的距離d=$\frac{|6-16-5|}{\sqrt{9+16}}$=3,
∴圓C截直線l2:3x+4y-5=0所得的弦長|AB|=2$\sqrt{{r}^{2}-ztgj53h^{2}}$=2$\sqrt{25-9}$=8.
故答案為:8.

點評 本題考查圓截直線所得弦長的求法,是中檔題,解題時要認真審題,注意圓的性質、點到直線的距離公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知向量$\overline{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$|$\overrightarrow{a}$-$\overrightarrow$|.求:
(1)$\overrightarrow{a}$•(2$\overrightarrow{a}$-4$\overrightarrow$);
(2)|3$\overrightarrow{a}$-2$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知直線x-my-1-m=0與圓x2+y2=1相切,則實數(shù)m的值為( 。
A.l或0B.0C.-1或0D.l或-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知過球面上有三點A,B,C的截面到球心的距離是球半徑的一半,且AB=BC=CA=2,則此球的半徑是( 。
A.$\frac{3}{4}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,菱形ABCD中,∠ABC=60°,AC與BD相交于點O,AE⊥平面ABCD,CF∥AE,AB=AE=2.
(Ⅰ)求證:BD⊥平面ACFE;
(Ⅱ)當直線FO與平面BED所成角的大小為45°時,求CF的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在平行四邊形ABCD中,$\overrightarrow{AC}$•$\overrightarrow{CB}$=0,AC=$\sqrt{2}$,BC=1,若將其沿AC折成直二面角D-AC-B,三棱錐D-ABC的各頂點都在球O的球面上,則球O的表面積為( 。
A.16πB.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.過點P(l,-$\sqrt{3}$)的直線l截圓x2+y2=5所得弦長不小于4,則直線l的傾斜角的取值范圍是( 。
A.[$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{2π}{3}$]C.[$\frac{π}{2}$,$\frac{5π}{6}$]D.[$\frac{2π}{3}$,π]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調查,隨機調查了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(1)由以上統(tǒng)計數(shù)據填下面2乘2列聯(lián)表,并問是否有的99%把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
(2)若對年齡在[5,15)的被調查人中各隨機選取兩人進行調查,恰好兩人都支持“生育二胎放開”的概率是多少?
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
支持a=c=
不支持b=d=
合計
參考數(shù)據:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知角x始邊與x軸的非負半軸重合,與圓x2+y2=4相交于點A,終邊與圓x2+y2=4相交于點B,點B在x軸上的射影為C,△ABC的面積為S(x),函數(shù)y=S(x)的圖象大致是(  )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案