A. | B. | ||||
C. | D. |
分析 由題意畫出圖象,由三角形的面積公式表示出S(x),利用排除法和特值法選出正確答案.
解答 解:如圖A(2,0),在RT△BOC中,
|BC|=2|sinx|,|OC|=2|cosx|,
∴△ABC的面積為S(x)=$\frac{1}{2}$|BC||AC|≥0,
所以排除C、D;
選項A、B的區(qū)別是△ABC的面積為S(x)何時取到最大值?
下面結(jié)合選項A、B中的圖象利用特值驗證:
當(dāng)x=$\frac{π}{2}$時,△ABC的面積為S(x)=$\frac{1}{2}×2×2$=2,
當(dāng)x=$\frac{3π}{4}$時,|BC|=2|sin$\frac{3π}{4}$|=$\sqrt{2}$,|OC|=2|cos$\frac{3π}{4}$|=$\sqrt{2}$,
則|AC|=2+$\sqrt{2}$,
∴△ABC的面積為S(x)=$\frac{1}{2}×\sqrt{2}×(2+\sqrt{2})$=$\sqrt{2}+1>2$,
綜上可知,答案B的圖象正確,
故選:B.
點評 本題考查了直線與圓的位置關(guān)系,三角形的面積公式,以及選擇題的解題方法:排除法和特值法,考查了數(shù)形結(jié)合思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{2}$+1 | C. | $\sqrt{2}$+2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | -$\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com