5.已知函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),對定義域內(nèi)的任意x1、x2,都有f(x1•x2)=f(x1)+f(x2),則f(1)的值為(  )
A.1B.2C.0D.-1

分析 利用賦值法,通過x=1,求解f(1)的值.

解答 解:∵f(x1•x2)=f(x1)+f(x2
∴f(1)=f(1•1)=f(1)+f(1),
∴f(1)=0,
故選:C.

點(diǎn)評 本題考查抽象函數(shù)的應(yīng)用,賦值法的應(yīng)用,考查分析問題解決問題的能力以及計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線經(jīng)過圓(x-1)2+(y-2$\sqrt{2}}$)2=16的圓心,則此雙曲線的離心率是( 。
A.2B.3C.$\sqrt{5}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,直線DA過圓O的圓心,且交圓O于A,B兩點(diǎn),BC=CO=$\frac{1}{2}$BD,DM為圓O的一條割線,且與圓O交于M,T兩點(diǎn).
(1)證明:DT•DM=DO•DC;
(2)若∠DOT=80°,BM平分∠DMC,求∠BMC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.關(guān)于x的方程f ( x )+x-a=0有兩個實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。ㄆ渲,$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_2}x,x>0\end{array}\right.$)
A.(-∞,1]B.[0,1]C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.拋物線C:y2=4x的焦點(diǎn)是F,準(zhǔn)線是l,點(diǎn)A在l上,點(diǎn)B在C上,若$\overrightarrow{AB}$=2$\overrightarrow{BF}$,則|$\overrightarrow{BF}$|=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=$\frac{{{{10}^x}-{{10}^{-x}}}}{{{{10}^x}+{{10}^{-x}}}}$.
(1)判斷函數(shù)f(x)的奇偶性并證明;
(2)證明f(x)是定義域內(nèi)的增函數(shù);
(3)解不等式f(1-m)+f(1-m2)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名六年級學(xué)生進(jìn)行了問卷調(diào)查,得到如下2×2列聯(lián)表,平均每天喝500ml以上為常喝,體重超過50kg為肥胖.已知在這30人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為$\frac{4}{15}$.
常喝不常喝合計(jì)
肥胖6        28     
不肥胖41822
合計(jì)102030
(1)請將上面的列聯(lián)表補(bǔ)充完整.是否有99.5%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由.
(2)現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生(其中有2名女生)中,抽取2人參加電視節(jié)目,則正好抽到1男1女的概率是多少?
(3)現(xiàn)從常喝碳酸飲料的學(xué)生中抽取3人參加電視節(jié)目,記ξ表示常喝碳酸飲料且肥胖的學(xué)生人數(shù),求ξ的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若動△ABC內(nèi)接于拋物線y2=4x,且△ABC的重心恰好是拋物線的焦點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.己知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且滿足4Sn=(an+1)2
(I)求出a1,a2的值,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<2.

查看答案和解析>>

同步練習(xí)冊答案