在半徑為1的圓內(nèi)一條直徑上任意過一點(diǎn)作垂直于直徑的弦,求弦長超過圓內(nèi)接等邊三角形的邊長的概率.

答案:
解析:

  解:記事件A={弦長超過圓內(nèi)接等邊三角形的邊長},如圖,不妨在過等邊△BCD的頂點(diǎn)B的直徑BE上任取一點(diǎn)作垂直于直徑的弦,顯然當(dāng)弦為CD時(shí)就是邊長,弦長大于|CD|長的條件是圓心O到弦的距離小于|OF|,由幾何概率公式得P(A)=

  答:弦長超過圓內(nèi)接等邊三角形的邊長的概率是


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在半徑為1的圓上隨機(jī)地取兩點(diǎn),連成一條弦,則其長超過圓內(nèi)接正n邊形(n≥4)的邊長的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A是半徑為1的圓上一定點(diǎn),在圓上任取一點(diǎn)B,連AB成一條弦,則這條弦的長度超過圓內(nèi)接等邊三角形的邊長的概率為
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在半徑為1的圓內(nèi)隨機(jī)地取一條弦,問其長超過圓內(nèi)接等邊三角形的邊長的可能性(概率)是多少?

     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在半徑為1的圓上隨機(jī)地取兩點(diǎn),連成一條弦,則其長超過圓內(nèi)接等邊三角形的邊長的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案